
Type-Based Methods for Termination and Productivity

in Coq

Bruno Barras1 Jorge Luis Sacchini2

1INRIA Saclay & LIX

2Carnegie Mellon University – Qatar

July 22, 2013

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 1 / 26

Coq

Coq is a total dependently-typed programming language

Totality means:
◮ Functions must be defined in their entire domain (no partial functions)
◮ Recursive functions must be terminating
◮ Co-recursive functions must be productive

Non-terminations leads to inconsistencies
Ex: (let f x = f x in f 0) : 0 = 1

Totality ensures logical consistency and decidability of type checking

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 2 / 26

Coq

Termination and productivity are undecidable problems

Approximate the answer

Coq imposes syntactic restrictions on (co-)recursive definitions

For termination: guarded-by-destructors

Recursive calls performed only on structurally smaller terms

Γ(f : I → T) ⊢ M : I → T

Γ ⊢ (fix f : I → T := M) : I → T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 3 / 26

Coq

Termination and productivity are undecidable problems

Approximate the answer

Coq imposes syntactic restrictions on (co-)recursive definitions

For termination: guarded-by-destructors

Recursive calls performed only on structurally smaller terms

Γ(f : I → T) ⊢ M : I → T G(f ,M)

Γ ⊢ (fix f : I → T := M) : I → T

The predicate G(f ,M) checks that all recursive calls of f in M are
guarded by destructors

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 3 / 26

Coq

Termination and productivity are undecidable problems

Approximate the answer

Coq imposes syntactic restrictions on (co-)recursive definitions

For termination: guarded-by-destructors

Recursive calls performed only on structurally smaller terms

Γ(f : I → T) ⊢ M : I → T G(f ,M)

Γ ⊢ (fix f : I → T := M) : I → T

The predicate G(f ,M) checks that all recursive calls of f in M are
guarded by destructors

Actually, the guard condition is checked on a normal form of the body

Γ(f : I → T) ⊢ M : I → T M →∗ N G(f ,N)

Γ ⊢ (fix f : I → T := M) : I → T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 3 / 26

Termination in Coq

Typical example:

fix half : nat → nat := λx . case x of
| O ⇒ O

| S O ⇒ O

| S (S p) ⇒ S(half p)

Recursive call is guarded. The recursive argument is smaller.

The initial implementation of G (due to Eduardo Giménez around
1994) has been extended over the years to allow more functions.

Most recent extension: commutative cuts (due to Pierre Boutillier).

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 4 / 26

Termination in Coq

Typical example:

fix half : nat → nat := λx . case x of
| O ⇒ O

| S O ⇒ O

| S (S p) ⇒ S(half p)

p ≺ S (S p)

Recursive call is guarded. The recursive argument is smaller.

The initial implementation of G (due to Eduardo Giménez around
1994) has been extended over the years to allow more functions.

Most recent extension: commutative cuts (due to Pierre Boutillier).

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 4 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ x

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ x

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

"

x1 ≺ x (x1 is a strict subterm of S x1 ≡ x)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ x

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

"

x1 ≺ x (x1 is a strict subterm of S x1 ≡ x)

Division: div x y =
⌈

x

y+1

⌉

fix div : nat → nat → nat := λxy . case x of
| O ⇒ O

| S x1 ⇒ S(div (minus x1 y) y)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ x

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

"

x1 ≺ x (x1 is a strict subterm of S x1 ≡ x)

Division: div x y =
⌈

x

y+1

⌉

fix div : nat → nat → nat := λxy . case x of
| O ⇒ O

| S x1 ⇒ S(div (minus x1 y) y)
"

minus x1 y � x1 ≺ S x1 ≡ x

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ x

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

Division: div x y =
⌈

x

y+1

⌉

fix div : nat → nat → nat := λxy . case x of
| O ⇒ O

| S x1 ⇒ S(div (minus x1 y) y)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ O

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

"

x1 ≺ x (x1 is a strict subterm of S x1 ≡ x)

Division: div x y =
⌈

x

y+1

⌉

fix div : nat → nat → nat := λxy . case x of
| O ⇒ O

| S x1 ⇒ S(div (minus x1 y) y)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Subterm relation

Subtraction:

fix minus : nat → nat → nat := λxy . case x , y of
| O, ⇒ O

| S x1,O ⇒ S x1
| S x1,S y1 ⇒ minus x1 y1

"

x1 ≺ x (x1 is a strict subterm of S x1 ≡ x)

Division: div x y =
⌈

x

y+1

⌉

fix div : nat → nat → nat := λxy . case x of
| O ⇒ O

| S x1 ⇒ S(div (minus x1 y) y)
$

minus x1 y 6� x1 ≺ S x1 ≡ x

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5 / 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A → list (roseA) → roseA

rmap := λf : A → B . fix rmap : roseA → roseB :=
λt. case t of
node x ts ⇒ node (f x) (map rmap ts)

map := λf : A → B . fix map : listA → listB :=
λl . case l of
nil ⇒ nil
cons x xs ⇒ cons (f x) (map xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 6 / 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A → list (roseA) → roseA

rmap := λf : A → B . fix rmap : roseA → roseB :=
λt. case t of "

node x ts ⇒ node (f x) (map rmap ts)

map := λf : A → B . fix map : listA → listB :=
λl . case l of
nil ⇒ nil "

cons x xs ⇒ cons (f x) (map xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 6 / 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A → list (roseA) → roseA

rmap := λf : A → B . fix rmap : roseA → roseB :=
λt. case t of
node x ts ⇒ node (f x) (map rmap ts)

map := fix map : (A → B) → listA → listB :=
λf l . case l of
nil ⇒ nil "

cons x xs ⇒ cons (f x) (map f xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 6 / 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A → list (roseA) → roseA

rmap := λf : A → B . fix rmap : roseA → roseB :=
λt. case t of $

node x ts ⇒ node (f x) (map rmap ts)

map := fix map : (A → B) → listA → listB :=
λf l . case l of
nil ⇒ nil "

cons x xs ⇒ cons (f x) (map f xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 6 / 26

Syntactic criteria
Limitations

Works on syntax: small changes in code can make functions ill-typed

Not compositional

Difficult to understand for users
◮ Many questions about termination in the Coq list
◮ Error messages not informative

Difficult to implement: termination checking is the most delicate part
of Coq’s kernel

Inefficient: guard condition is checked on the normal form of fixpoints
bodies

Difficult to study
◮ Little documentation
◮ Complicated to even define

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 7 / 26

Termination in Coq

Many ways to get around the guard condition:
◮ Adding extra argument to act as measure of termination
◮ Wellfounded recursion
◮ Ad-hoc predicate (Bove)
◮ Tool support (Function, Program)

But this complicates function definition

May affect efficiency

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 8 / 26

Termination using sized types

Long history: Haskell [Pareto et al.], λ̂ [Joao Frade et al.], Fω̂
[Abel], CIĈ [Barthe et al.], CC+rewriting [Blanqui et al.] . . .

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 9 / 26

Termination using sized types

Long history: Haskell [Pareto et al.], λ̂ [Joao Frade et al.], Fω̂
[Abel], CIĈ [Barthe et al.], CC+rewriting [Blanqui et al.] . . .

Basic idea: user-defined datatypes are decorated with size information

nat ::= O : nat | S : nat → nat

Intuitive meaning: [nat] = {O,S O,S(S O), . . .}

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 9 / 26

Termination using sized types

Long history: Haskell [Pareto et al.], λ̂ [Joao Frade et al.], Fω̂
[Abel], CIĈ [Barthe et al.], CC+rewriting [Blanqui et al.] . . .

Basic idea: user-defined datatypes are decorated with size information

nat ::= O : nat | S : nat → nat

Intuitive meaning: [nat] = {O,S O,S(S O), . . .}

Sized types are approximations

nat〈s〉

Intuitive meaning: [nat〈s〉] = {O,S O, . . . ,S(. . . (S O) . . .)︸ ︷︷ ︸
s−1

}

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 9 / 26

Termination using sized types

Size annotations keep track of the size of elements

s ::= ı | ŝ | ∞

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

Size annotations keep track of the size of elements

s ::= ı | ŝ | ∞

∞̂ = ∞

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

Size annotations keep track of the size of elements

s ::= ı | ŝ | ∞

Γ ⊢ O : nat

Γ ⊢ M : nat

Γ ⊢ S M : nat

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

Size annotations keep track of the size of elements

s ::= ı | ŝ | ∞

Γ ⊢ O : nat〈 ŝ 〉

Γ ⊢ M : nat〈s〉

Γ ⊢ S M : nat〈 ŝ 〉

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

Size annotations keep track of the size of elements

s ::= ı | ŝ | ∞

Γ ⊢ O : nat〈 ŝ 〉

Γ ⊢ M : nat〈s〉

upper bound

Γ ⊢ S M : nat〈 ŝ 〉

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

Size annotations keep track of the size of elements

s ::= ı | ŝ | ∞

Γ ⊢ O : nat〈 ŝ 〉

Γ ⊢ M : nat〈s〉

Γ ⊢ S M : nat〈 ŝ 〉

Substage relation

s ⊑ ŝ s ⊑ ∞

defines a subtype relation

s ⊑ r

nat〈s〉 ≤ nat〈r〉

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types
Fixpoint rule

Recursive functions are defined on approximations of datatypes:

Γ(f : I → T) ⊢ M : I → T

Γ ⊢ (fix f : I → T := M) : I → T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 11 / 26

Termination using sized types
Fixpoint rule

Recursive functions are defined on approximations of datatypes:

Γ(f : I 〈ı〉 → T) ⊢ M : I 〈 ı̂ 〉 → T

Γ ⊢ (fix f : I → T := M) : I 〈s〉 → T
ı fresh

Recursive calls on terms of smaller size

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 11 / 26

Termination using sized types
Fixpoint rule

Recursive functions are defined on approximations of datatypes:

Γ(f : I 〈ı〉 → T) ⊢ M : I 〈 ı̂ 〉 → T

Γ ⊢ (fix f : I → T := M) : I 〈s〉 → T
ı fresh

Recursive calls on terms of smaller size

Size-preserving functions: return type T can depend on ı

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 11 / 26

Termination using sized types
Fixpoint rule

Recursive functions are defined on approximations of datatypes:

Γ(f : I 〈ı〉 → T) ⊢ M : I 〈 ı̂ 〉 → T

Γ ⊢ (fix f : I → T := M) : I 〈s〉 → T
ı fresh

Recursive calls on terms of smaller size

Size-preserving functions: return type T can depend on ı

Non-structural recursion

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 11 / 26

Example: quicksort
Non-structural recursion

filter ≡ . . . : ΠA.(A → bool) → list A → list A× list A

(++) ≡ . . . : ΠA.list A → list A → list A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Example: quicksort
Non-structural recursion

filter ≡ . . . : ΠA.(A → bool) → list A → list A× list A

(++) ≡ . . . : ΠA.list A → list A → list A

fix qsort : listA → listA :=

λx : listA. case x of
| nil ⇒ nil

| cons h t ⇒ let (s, g) = filter (< h) t in

(qsort s) ++ (cons h (qsort g))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Example: quicksort
Non-structural recursion

filter ≡ . . . : ΠA.(A → bool) → list〈s〉A → list〈s〉A× list〈s〉A

(++) ≡ . . . : ΠA.list〈s〉A → list〈r〉A → list〈∞〉A

fix qsort : listA → listA :=

λx : listA. case x of
| nil ⇒ nil

| cons h t ⇒ let (s, g) = filter (< h) t in

(qsort s) ++ (cons h (qsort g))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Example: quicksort
Non-structural recursion

filter ≡ . . . : ΠA.(A → bool) → list〈s〉A → list〈s〉A× list〈s〉A

(++) ≡ . . . : ΠA.list〈s〉A → list〈r〉A → list〈∞〉A

fix qsort : listA → listA :=

λx : listA. case x list〈 ı̂ 〉 of
| nil ⇒ nil

| cons h t list〈ı〉 ⇒ let (s, g) = filter (< h) t list〈ı〉 in

(qsort s list〈ı〉) ++ (cons h (qsort g list〈ı〉))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Example: quicksort
Non-structural recursion

filter ≡ . . . : ΠA.(A → bool) → list〈s〉A → list〈s〉A× list〈s〉A

(++) ≡ . . . : ΠA.list〈s〉A → list〈r〉A → list〈∞〉A

fix qsort : listA → listA :=

λx : listA. case x list〈 ı̂ 〉 of
| nil ⇒ nil

| cons h t list〈ı〉 ⇒ let (s, g) = filter (< h) t list〈ı〉 in

(qsort s list〈ı〉) ++ (cons h (qsort g list〈ı〉))

: ΠA.list〈s〉A → list〈∞〉A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Type-based termination

Handle higher-order data

node : ΠA.A → list〈∞〉 (rose〈s〉A) → rose〈 ŝ 〉A

Advantages over syntactic criteria
◮ Expressiveness
◮ Compositional
◮ Easier to understand (specially for ill-typed terms)
◮ Easier to implement (as shown in prototype implementations)
◮ Easier to study (semantically intuitive)
◮ Not intrusive for the user (minimal annotations required)

Good candidate to replace syntactic criterion in Coq

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 13 / 26

Coinductive Types

Coinductive types are used to model and reason about infinite data
and infinite processes.

Coinductive types can be seen as the dual of inductive types.

Inductive types Coinductive types

Induction Coinduction

Recursive functions
consume data

Corecursive functions
produce data

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 14 / 26

Coinductive Types in Coq

Streams:

CoInductive streamA := scons : A → streamA → streamA

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 15 / 26

Coinductive Types in Coq

Streams:

CoInductive

Empty as an inductive type

streamA := scons : A → streamA → streamA

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 15 / 26

Coinductive Types in Coq

Streams:

CoInductive streamA := scons : A → streamA → streamA

Corecursive functions produce streams:

zeroes := cofix Z := scons(0,Z)

zeroes produce the stream:

scons(0, scons(0, scons(0, . . .)))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 15 / 26

Coinductive types

Inductive types Coinductive types

Termination Productivity

In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

For corecursive functions, the dual condition to termination is
productivity.

In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z1 := scons(0,Z1)

cofix Z2 := scons(0, tail Z2)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Coinductive types

Inductive types Coinductive types

Termination Productivity

In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

For corecursive functions, the dual condition to termination is
productivity.

In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z1 := scons(0,Z1) "

cofix Z2 := scons(0, tail Z2)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Coinductive types

Inductive types Coinductive types

Termination Productivity

In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

For corecursive functions, the dual condition to termination is
productivity.

In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z1 := scons(0,Z1) "

cofix Z2 := scons(0, tail Z2) $

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Coinductive types

Inductive types Coinductive types

Termination Productivity

In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

For corecursive functions, the dual condition to termination is
productivity.

In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z1 := scons(0,Z1) "

cofix Z2 := scons(0, tail Z2)

(tailZ2) loops

$

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Syntactic-Based Methods for Productivity

Inductive types Coinductive types

Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

Guarded-by-constructor: every corecursive call is performed directly
under a constructor

Same limitations as in the inductive case

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types Coinductive types

Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

Guarded-by-constructor: every corecursive call is performed directly
under a constructor

Same limitations as in the inductive case

nats := cofix nats := λn. scons(n, nats (1 + n))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types Coinductive types

Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

Guarded-by-constructor: every corecursive call is performed directly
under a constructor

Same limitations as in the inductive case

nats := cofix nats := λn. scons(n, nats (1 + n)) "

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types Coinductive types

Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

Guarded-by-constructor: every corecursive call is performed directly
under a constructor

Same limitations as in the inductive case

nats := cofix nats := λn. scons(n, nats (1 + n)) "

nats := λn. cofix nats := scons(n,map (λx . 1+x) nats)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types Coinductive types

Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

Guarded-by-constructor: every corecursive call is performed directly
under a constructor

Same limitations as in the inductive case

nats := cofix nats := λn. scons(n, nats (1 + n)) "

nats := λn. cofix nats := scons(n,map (λx . 1+x) nats)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types Coinductive types

Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

Guarded-by-constructor: every corecursive call is performed directly
under a constructor

Same limitations as in the inductive case

nats := cofix nats := λn. scons(n, nats (1 + n)) "

nats := λn. cofix nats := scons(n,map (λx . 1+x) nats) $

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Type-Based Methods for Productivity

Sized types can be applied to productivity checking as well!

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

Sized types can be applied to productivity checking as well!

Dual meaning of size annotations on coinductive types

stream〈s〉A

is the type of streams of which at least s elements can be produced

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

Sized types can be applied to productivity checking as well!

Dual meaning of size annotations on coinductive types

stream〈s〉A

is the type of streams of which at least s elements can be produced

Size annotations are contra-variant:

r ⊑ s

stream〈s〉T ≤ stream〈r〉T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

Sized types can be applied to productivity checking as well!

Dual meaning of size annotations on coinductive types

stream〈s〉A

is the type of streams of which at least s elements can be produced

Size annotations are contra-variant:

r ⊑ s

stream〈s〉T ≤ stream〈r〉T

s ⊑ r

list〈s〉T ≤ list〈r〉T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

Typing rules are similar to the inductive case

Rules for constructors:

Γ ⊢ M : A Γ ⊢ N : stream〈s〉A

Γ ⊢ scons(M,N) : stream〈 ŝ 〉A

Cofixpoint definition is also similar to fixpoint definition:

Γ(f : stream〈ı〉A) ⊢ M : stream〈 ı̂ 〉A

Γ ⊢ cofix f := M : stream〈s〉A
ı fresh

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 19 / 26

Type-Based Methods for Productivity

Typing rules are similar to the inductive case

Rules for constructors:

Γ ⊢ M : A Γ ⊢ N : stream〈s〉A

Γ ⊢ scons(M,N) : stream〈 ŝ 〉A

Γ ⊢ M : A Γ ⊢ N : list〈s〉A

Γ ⊢ cons(M,N) : list〈 ŝ 〉A

Cofixpoint definition is also similar to fixpoint definition:

Γ(f : stream〈ı〉A) ⊢ M : stream〈 ı̂ 〉A

Γ ⊢ cofix f := M : stream〈s〉A
ı fresh

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 19 / 26

Type-Based Methods for Productivity

Typing rules are similar to the inductive case

Rules for constructors:

Γ ⊢ M : A Γ ⊢ N : stream〈s〉A

Γ ⊢ scons(M,N) : stream〈 ŝ 〉A

Γ ⊢ M : A Γ ⊢ N : list〈s〉A

Γ ⊢ cons(M,N) : list〈 ŝ 〉A

Cofixpoint definition is also similar to fixpoint definition:

Γ(f : stream〈ı〉A) ⊢ M : stream〈 ı̂ 〉A

Γ ⊢ cofix f := M : stream〈s〉A
ı fresh

Γ(f : list〈ı〉A → U) ⊢ M : list〈 ı̂ 〉A → U

Γ ⊢ fix f := M : list〈s〉A → U
ı fresh

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 19 / 26

Co-recursive definitions
Examples

map : (A → B) → stream A → stream B

merge : stream nat → stream nat → stream nat

merge (1 3 5 . . .) (2 4 6 . . .) = (1 2 3 4 . . .)

ham := cofix ham : stream nat :=

scons(1,merge (map (λx . 2∗x) ham)

(merge (map (λx . 3∗x) ham)

(map (λx . 5∗x) ham)))

ham = (1 2 3 4 5 6 8 9 10 12 15 . . .)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 20 / 26

Co-recursive definitions
Examples

map : (A → B) → stream〈s〉A → stream〈s〉B

merge : stream〈s〉nat → stream〈s〉nat → stream〈s〉nat

merge (1 3 5 . . .) (2 4 6 . . .) = (1 2 3 4 . . .)

ham := cofix ham : stream nat :=

scons(1,merge (map (λx . 2∗x) ham)

(merge (map (λx . 3∗x) ham)

(map (λx . 5∗x) ham)))

ham = (1 2 3 4 5 6 8 9 10 12 15 . . .)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 20 / 26

Co-recursive definitions
Examples

map : (A → B) → stream〈s〉A → stream〈s〉B

merge : stream〈s〉nat → stream〈s〉nat → stream〈s〉nat

merge (1 3 5 . . .) (2 4 6 . . .) = (1 2 3 4 . . .)

ham := cofix ham : stream nat :=

scons(1,merge (map (λx . 2∗x) hamstream〈ı〉)

(merge (map (λx . 3∗x) hamstream〈ı〉)

(map (λx . 5∗x) hamstream〈ı〉)))

ham = (1 2 3 4 5 6 8 9 10 12 15 . . .)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 20 / 26

Sized types for coinduction

Type-based productivity has several advantages over syntactic-based
◮ More expressive
◮ Compositional
◮ Easier to understand (specially for ill-typed terms)
◮ Easier to implement (as shown in prototype implementations)
◮ Easier to study (semantically intuitive)
◮ Not intrusive for the user (minimal annotations required)

Furthermore, sized types treat inductive and co-inductive types in a
similar way

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 21 / 26

What’s next?

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 22 / 26

What’s next?

Design a type-based termination system for Coq

Implementation!

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 22 / 26

What’s next?

Design a type-based termination system for Coq

Implementation!

Sombrero line (Barthe et al.) : λ̂ , F ,̂ CIĈ

Sizes are declared implicitly (not first class):

Size inference: little burden for the user
◮ Constraint-based algorithm
◮ Treats fixpoints and co-fixpoints in the same way

Still some issues remain in order to adapt to full Coq

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 22 / 26

In a future Coq version . . .

Fixpoint map ı (f : A -> B) (xs : List<ı> A) : List<ı> B :=

match xs with

nil => nil

cons h t => cons (f h) (map f t)

end.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 / 26

In a future Coq version . . .

Fixpoint map ı (f : A -> B) (xs : List<ı> A) : List<ı> B :=

match xs with

nil => nil

cons h t => cons (f h) (map f t)

end.

Check map.

map : ∀ ı. (A -> B) -> List<ı> A -> List<ı> B.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 / 26

In a future Coq version . . .

Fixpoint map ı (f : A -> B) (xs : List<ı> A) : List<ı> B :=

match xs with

nil => nil

cons h t => cons (f h) (map f t)

end.

Check map.

map : ∀ ı. (A -> B) -> List<ı> A -> List<ı> B.

Fixpoint ntail ı A (x : nat<ı>) : List A → List A :=

...

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 / 26

In a future Coq version . . .

Fixpoint map ı (f : A -> B) (xs : List<ı> A) : List<ı> B :=

match xs with

nil => nil

cons h t => cons (f h) (map f t)

end.

Check map.

map : ∀ ı. (A -> B) -> List<ı> A -> List<ı> B.

Fixpoint ntail ı A (x : nat<ı>) : List A → List A :=

...

Check ntail.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 / 26

In a future Coq version . . .

Fixpoint map ı (f : A -> B) (xs : List<ı> A) : List<ı> B :=

match xs with

nil => nil

cons h t => cons (f h) (map f t)

end.

Check map.

map : ∀ ı. (A -> B) -> List<ı> A -> List<ı> B.

Fixpoint ntail ı A (x : nat<ı>) : List A → List A :=

...

Check ntail.

ntail : ∀ ı ∀ . forall A, nat<ı> -> List<> A -> List<> A.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 / 26

In a future Coq version . . .

Fixpoint map ı (f : A -> B) (xs : List<ı> A) : List<ı> B :=

match xs with

nil => nil

cons h t => cons (f h) (map f t)

end.

Check map.

map : ∀ ı. (A -> B) -> List<ı> A -> List<ı> B.

Fixpoint ntail ı A (x : nat<ı>) : List A → List A :=

...

Check ntail.

ntail : ∀ ı ∀ 1 ∀ 2. 2 ⊑ 1 =>

forall A, nat<ı> -> List<1> A -> List<2> A.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 / 26

Summary

Keep extending the guard condition is not sustainable

Time is right to rethink termination checking in Coq

Sized types seem to be an ideal candidate
◮ More expressive
◮ Compositional
◮ Easier to study and implement

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 24 / 26

Summary

Keep extending the guard condition is not sustainable

Time is right to rethink termination checking in Coq

Sized types seem to be an ideal candidate
◮ More expressive
◮ Compositional
◮ Easier to study and implement

Project to start at CMU-Q in September
◮ Careful design before implementation

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 24 / 26

Summary

Keep extending the guard condition is not sustainable

Time is right to rethink termination checking in Coq

Sized types seem to be an ideal candidate
◮ More expressive
◮ Compositional
◮ Easier to study and implement

Project to start at CMU-Q in September
◮ Careful design before implementation

Is this an opportunity to rethink coinduction in Coq?

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 24 / 26

Summary

Keep extending the guard condition is not sustainable

Time is right to rethink termination checking in Coq

Sized types seem to be an ideal candidate
◮ More expressive
◮ Compositional
◮ Easier to study and implement

Project to start at CMU-Q in September
◮ Careful design before implementation

Is this an opportunity to rethink coinduction in Coq?

Thank you!

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 24 / 26

A note on coinduction with dependent types

Coinduction in Coq is broken: it does not satisfy type preservation

The problem: cofixpoint unfolding is only allowed inside case analysis

case (cofix f := M) of . . . → case M[f := (cofix f := M)] of . . .

Already observed by Giménez in 1996

Some promising ideas: OTT (McBride) and copatterns (Abel et al.)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 25 / 26

A note on coinduction with dependent types

Example: consider a co-inductive type U with only one costructor
in : U → U

u : U force : U → U

u
def
= cofix u := in u force

def
= λx .case x of in x ′ ⇒ in x ′

We can prove that x = force x for any x : U

eq : Πx : U.x = force x

eq
def
= λx .case x of in x ′ ⇒ refl

Then, eq u : u = force u,

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 26 / 26

A note on coinduction with dependent types

Example: consider a co-inductive type U with only one costructor
in : U → U

u : U force : U → U

u
def
= cofix u := in u force

def
= λx .case x of in x ′ ⇒ in x ′

We can prove that x = force x for any x : U

eq : Πx : U.x = force x

eq
def
= λx .case x of in x ′ ⇒ refl

Then, eq u : u = in u,

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 26 / 26

A note on coinduction with dependent types

Example: consider a co-inductive type U with only one costructor
in : U → U

u : U force : U → U

u
def
= cofix u := in u force

def
= λx .case x of in x ′ ⇒ in x ′

We can prove that x = force x for any x : U

eq : Πx : U.x = force x

eq
def
= λx .case x of in x ′ ⇒ refl

Then, eq u : u = in u, and eq u →∗ refl

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 26 / 26

A note on coinduction with dependent types

Example: consider a co-inductive type U with only one costructor
in : U → U

u : U force : U → U

u
def
= cofix u := in u force

def
= λx .case x of in x ′ ⇒ in x ′

We can prove that x = force x for any x : U

eq : Πx : U.x = force x

eq
def
= λx .case x of in x ′ ⇒ refl

Then, eq u : u = in u, and eq u →∗ refl

But refl : u = u

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 26 / 26

A note on coinduction with dependent types

Example: consider a co-inductive type U with only one costructor
in : U → U

u : U force : U → U

u
def
= cofix u := in u force

def
= λx .case x of in x ′ ⇒ in x ′

We can prove that x = force x for any x : U

eq : Πx : U.x = force x

eq
def
= λx .case x of in x ′ ⇒ refl

Then, eq u : u = in u, and eq u →∗ refl

But refl : u = u

The types u = u and u = in u are not convertible since there is no
case forcing the unfolding of u.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 26 / 26

	Appendix

