Type-Based Methods for Termination and Productivity
in Coq

1

Bruno Barras Jorge Luis Sacchini?

LINRIA Saclay & LIX

2Carnegie Mellon University — Qatar

July 22, 2013

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Coq

@ Coq is a total dependently-typed programming language
@ Totality means:

» Functions must be defined in their entire domain (no partial functions)
» Recursive functions must be terminating
» Co-recursive functions must be productive

@ Non-terminations leads to inconsistencies
Ex: (letf x=Ffxinf0):0=1

@ Totality ensures logical consistency and decidability of type checking

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 2/26

Termination and productivity are undecidable problems

Approximate the answer

°
°
@ Coq imposes syntactic restrictions on (co-)recursive definitions
@ For termination: guarded-by-destructors

°

Recursive calls performed only on structurally smaller terms

rfFl—=T)F-M: I =T
FrE(fix f:l—>T:=M):1 =T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination and productivity are undecidable problems

Approximate the answer

°
°
@ Coq imposes syntactic restrictions on (co-)recursive definitions
@ For termination: guarded-by-destructors

°

Recursive calls performed only on structurally smaller terms
rNfF:l—-T)F-M: 1 > T Gg(f,M)
FrE(fix f:l—>T:=M):1 =T

The predicate G(f, M) checks that all recursive calls of f in M are
guarded by destructors

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 3/26

Coq

@ Termination and productivity are undecidable problems

@ Approximate the answer

@ Coq imposes syntactic restrictions on (co-)recursive definitions
@ For termination: guarded-by-destructors
°

Recursive calls performed only on structurally smaller terms
rNfF:l—-T)F-M: 1 > T Gg(f,M)
FrE(fix f:l—>T:=M):1 =T

The predicate G(f, M) checks that all recursive calls of f in M are
guarded by destructors

(]

Actually, the guard condition is checked on a normal form of the body

f:l—=T)FM: 1T M—=*N G(f,N)
Fr=(fixf:l—=T=M):1—-T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 3/26

Termination in Coq

@ Typical example:

fix half : nat — nat := Ax. case x of
| O=0
| SO=0
| S(Sp)= S(half p)

Recursive call is guarded. The recursive argument is smaller.

@ The initial implementation of G (due to Eduardo Giménez around
1994) has been extended over the years to allow more functions.

@ Most recent extension: commutative cuts (due to Pierre Boutillier).

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 4 /26

Termination in Coq

@ Typical example:

fix half : nat — nat := A\x. case x of

| O=0
| S0=0 p=5(Sp)

| S(Sp)= S(half p)

Recursive call is guarded. The recursive argument is smaller.

@ The initial implementation of G (due to Eduardo Giménez around
1994) has been extended over the years to allow more functions.

@ Most recent extension: commutative cuts (due to Pierre Boutillier).

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 4 /26

Termination in Coq

Subterm relation

Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of
| O0,.=x
| Sx1,0=Sx;
| Sx1,Sy1 = minus x1 y1

Bruno Barras, Jorge Luis Sacchini

Type-Based Methods for Termination and Productivity in Coq 5/ 26

Termination in Coq

Subterm relation

Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of

| O0,.=x /

| Sx1,0=Sx;
| Sx1,Sy1 = minus x1 y1

x1 < x (xq is a strict subterm of S x; = x)

Bruno Barras, Jorge Luis Sacchini

Type-Based Methods for Termination and Productivity in Coq 5/ 26

Termination in Coq

Subterm relation

Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of

| O0,.=x /

’ SX1,0:>5X1
| Sx1,Sy1 = minus x1 y1

x1 < x (xq is a strict subterm of S x; = x)
o [ox

Division: div x y = ’7y+1—‘
fix div : nat — nat — nat := Axy. case x of

| 0=0
| Sx1 = S(div(minus x1 y) y)

Bruno Barras, Jorge Luis Sacchini

Type-Based Methods for Termination and Productivity in Coq 5/ 26

Termination in Coq

Subterm relation

Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of

| O0,.=x /

’ SX1,0:>5X1
| Sx1,Sy1 = minus x1 y1

x1 < x (xq is a strict subterm of S x; = x)
L [
Division: div x y = ’7y+1—‘

fix div : nat — nat — nat := Axy. case x of

| 0= 0 /

| Sx1 = S(div(minus x1 y) y)

minus x; ¥ < x1 < Sx1 = x

Bruno Barras, Jorge Luis Sacchini

Type-Based Methods for Termination and Productivity in Coq 5/ 26

Termination in Coq

Subterm relation

Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of
| O0,.=x
’ SX1, 0= 5X1
| Sx1,Sy1 = minus x1 y1

o [x
Division: div x y = ’7y+1—‘
fix div : nat — nat — nat := Axy. case x of

| 0= 0
| Sx1 = S(div(minus x1 y) y)

Bruno Barras, Jorge Luis Sacchini

Type-Based Methods for Termination and Productivity in Coq

5/26

Termination in Coq

Subterm relation
Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of

| 0,.=0 v

’ SX1,0:>5X1
| Sx1,Sy1 = minus x1 y1

x1 < x (xq is a strict subterm of S x; = x)
o [ox

Division: div x y = ’7y+1—‘
fix div : nat — nat — nat := Axy. case x of

| 0= 0
| Sx1 = S(div(minus x1 y) y)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5/ 26

Termination in Coq

Subterm relation
Subtraction:

fix minus : nat — nat — nat := Axy. case x, y of

| 0,.=0 v

’ SX1,0:>5X1
| Sx1,Sy1 = minus x1 y1

x1 < x (xq is a strict subterm of S x; = x)

Division: div x y = {ﬁ—‘

fix div : nat — nat — nat := Axy. case x of
| 0=0 x
| Sx1 = S(div(minus x; y) y)

minus x;y y A x1 < Sx; = x

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 5/ 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A — list (rose A) — rose A

rmap := Af : A— B. fix rmap : rose A — rose B :=
At. case t of
node x ts = node (f x) (map rmap ts)

map:= A : A— B.fixmap:listA—list B :=
Al. case [of
nil = nil
cons x xs = cons (f x) (map xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

6/ 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A — list (rose A) — rose A

rmap := Af : A— B. fix rmap : rose A — rose B := /
At. case t of
node x ts = node (f x) (map rmap ts)

map:= A : A— B.fixmap:listA—list B :=

M. case | of
nil = nil /

cons x xs = cons (f x) (map xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 6 /26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A — list (rose A) — rose A

rmap := Af : A— B. fix rmap : rose A — rose B :=
At. case t of
node x ts = node (f x) (map rmap ts)

map := fix map: (A — B) — listA — list B :=
AMf I case | of
nil = nil /
cons x xs = cons (f x) (map f xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

6/ 26

Termination in Coq
Nested fixpoints

Inductive rose(A) : Type := node : A — list (rose A) — rose A

rmap := Af : A— B. fix rmap : rose A — rose B :=
At. case t of x
node x ts = node (f x) (map rmap ts)

map := fix map: (A — B) — listA — list B :=
AMf I case | of
nil = nil /
cons x xs = cons (f x) (map f xs)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 6 /26

Syntactic criteria

Limitations

(]

Works on syntax: small changes in code can make functions ill-typed

@ Not compositional
@ Difficult to understand for users
» Many questions about termination in the Coq list
» Error messages not informative
@ Difficult to implement: termination checking is the most delicate part
of Coq's kernel
o Inefficient: guard condition is checked on the normal form of fixpoints
bodies
o Difficult to study

» Little documentation
» Complicated to even define

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 7 /26

Termination in Coq

@ Many ways to get around the guard condition:
» Adding extra argument to act as measure of termination
Wellfounded recursion
Ad-hoc predicate (Bove)
Tool support (Function, Program)

v vy

@ But this complicates function definition

@ May affect efficiency

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

@ Long history: Haskell [Pareto et al.], X~ [Joao Frade et al.], F,~
[Abel], CIC™ [Barthe et al.], CC+rewriting [Blanqui et al.] ...

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 9 /26

Termination using sized types

@ Long history: Haskell [Pareto et al.], X~ [Joao Frade et al.], F,~
[Abel], CIC™ [Barthe et al.], CC+rewriting [Blanqui et al.] ...

@ Basic idea: user-defined datatypes are decorated with size information

nat := O : nat | S : nat — nat

Intuitive meaning: [nat] ={0,50,5(50),...}

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 9 /26

Termination using sized types

@ Long history: Haskell [Pareto et al.], X~ [Joao Frade et al.], F,~
[Abel], CIC™ [Barthe et al.], CC+rewriting [Blanqui et al.] ...

@ Basic idea: user-defined datatypes are decorated with size information

nat ::= O : nat | S : nat — nat

Intuitive meaning: [nat] ={0,50,5(50),...}

@ Sized types are approximations
nat(s)

Intuitive meaning: [nat(s)] ={0,50,...,5(...(5§0)...)}
—_———

s—1

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types
@ Size annotations keep track of the size of elements

su=1]5| 0

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

@ Size annotations keep track of the size » = = oo

su=1]5| 0

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

@ Size annotations keep track of the size of elements

su=1]5| 0
M :nat
O :nat 'FSM:nat

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

@ Size annotations keep track of the size of elements

su=1]5| 0
' M :nat(s)
N O :nat(s) 'ESM:nat(s)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

@ Size annotations keep track of the size of elements

su=1]5| 0
upper bound
' M :nat(s)
N O :nat(s) 'ESM:nat(s)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 10 / 26

Termination using sized types

@ Size annotations keep track of the size of elements

su=1|5| 00
' M :nat(s)
N O :nat(s) 'ESM:nat(s)
@ Substage relation
sCs sC oo
defines a subtype relation
sCr

nat(s) < nat(r)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

MF:l —=T)FM: =T
N-(fixf:1l—->T:=M):1 —T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

F(fF:1() = T)YEM:I{7)—>T
NE(fix f:l—>T:=M):I{s) =T

1 fresh

@ Recursive calls on terms of smaller size

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

F(fF:1() = T)YEM:I{7)—>T
NE(fix f:l—>T:=M):I{s) =T

1 fresh

@ Recursive calls on terms of smaller size

@ Size-preserving functions: return type T can depend on ¢

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

F(fF:1() = T)YEM:I{7)—>T
NE(fix f:l—>T:=M):I{s) =T

1 fresh

@ Recursive calls on terms of smaller size
@ Size-preserving functions: return type T can depend on ¢

@ Non-structural recursion

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Example: quicksort

Non-structural recursion

filter = ... : MMA.(A — bool) = list A —list Axlist A
(++)=...:NAlist A—list A—list A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 /26

Example: quicksort

Non-structural recursion

filter = ... : MA.(A — bool) — list A —list A Xxlist
(++)=...:NAlist A—list A—list A

fix gsort : list A — list A :=
Ax @ list A. case x of
| nil = nil
| consht = let (s,g) =filter (< h) t in
(gsorts) ++ (cons h(gsort g

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Example: quicksort

Non-structural recursion

filter = ... : MA.(A — bool) — list(s) A — list(s) A x list(s) A
(++) =...: NAllist(s) A — list(r) A — list(co) A

fix gsort : list A — list A :=
Ax @ list A. case x of
| nil = nil
| consht = let (s,g) =filter (< h) t in
(gsorts) ++ (cons h(gsortg)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Example: quicksort

Non-structural recursion

filter = ... : MA.(A — bool) — list(s) A — list(s) A x list(s) A
(++) =...: NAllist(s) A — list(r) A — list(co) A

fix gsort : list A — list A :=
Ax : list A. case xsH(%) of
| nil = nil
| cons h st = let (s, g) = filter (< h) t"t®) in
(gsort slist<2>) ++ (cons h(gsort glist<z>))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Example: quicksort

Non-structural recursion

filter = ... : MA.(A — bool) — list(s) A — list(s) A x list(s) A
(++) =...: NAllist(s) A — list(r) A — list(co) A

fix gsort : list A — list A :=
Ax : list A. case xsH(%) of
| nil = nil
| cons h st = let (s, g) = filter (< h) t"t®) in
(gsort slist<2>) ++ (cons h(gsort glist<z>))

s NAlist(s) A — list(oo) A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 12 / 26

Type-based termination

@ Handle higher-order data
node : MA.A — list(co) (rose(s) A) — rose(s) A

@ Advantages over syntactic criteria
» Expressiveness
Compositional
Easier to understand (specially for ill-typed terms)
Easier to implement (as shown in prototype implementations)
Easier to study (semantically intuitive)
Not intrusive for the user (minimal annotations required)

vV vy vy VvYyy

@ Good candidate to replace syntactic criterion in Coq

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 13 / 26

Coinductive Types

@ Coinductive types are used to model and reason about infinite data
and infinite processes.

@ Coinductive types can be seen as the dual of inductive types.

Inductive types ‘ Coinductive types
Induction Coinduction
Recursive functions Corecursive functions
consume data produce data

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Coinductive Types in Coq

@ Streams:

Colnductive stream A := scons : A — stream A — stream A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 15/ 26

Coinductive Types in Coq

® Straas Empty as an inductive type

Colnductive stream A := scons : A — stream A — stream A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 15/ 26

Coinductive Types in Coq

@ Streams:

Colnductive stream A := scons : A — stream A — stream A

@ Corecursive functions produce streams:
zeroes := cofix Z := scons(0, Z)
zeroes produce the stream:

scons(0, scons(0, scons(0, . . .)))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Coinductive types

Inductive types | Coinductive types
Termination ‘ Productivity

@ In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

@ For corecursive functions, the dual condition to termination is
productivity.

@ In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z; := scons(0, Z;)

cofix Zy := scons(0, tail Z)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Coinductive types

Inductive types | Coinductive types
Termination ‘ Productivity

@ In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

@ For corecursive functions, the dual condition to termination is
productivity.

@ In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z; := scons(0, Z;) ‘/

cofix Zy := scons(0, tail Z)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Coinductive types

Inductive types | Coinductive types
Termination ‘ Productivity

@ In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

@ For corecursive functions, the dual condition to termination is
productivity.

@ In the case of streams, productivity means that we can compute any
element of the stream in finite time:

cofix Z; := scons(0, Z;) ‘/

cofix Zy := scons(0, tail Z)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Coinductive types

Inductive types | Coinductive types
Termination ‘ Productivity

@ In proof assistants, termination of recursive functions is essential to
ensure logical consistency and decidability of type checking.

@ For corecursive functions, the dual condition to termination is
productivity.

@ In the case of streams, productivity means that we can compute any
element of the stream in finite time: i

(tail Z3) loops
cofix Z1 := scons(0, Z;) 4

cofix Zy := scons(0, tail Z)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 16 / 26

Syntactic-Based Methods for Productivity

Inductive types | Coinductive types
Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

@ Guarded-by-constructor: every corecursive call is performed directly
under a constructor

@ Same limitations as in the inductive case

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types | Coinductive types
Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

@ Guarded-by-constructor: every corecursive call is performed directly
under a constructor

@ Same limitations as in the inductive case

nats := cofix nats := An. scons(n, nats (1 + n))

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types | Coinductive types
Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

@ Guarded-by-constructor: every corecursive call is performed directly
under a constructor

@ Same limitations as in the inductive case

nats := cofix nats := An. scons(n, nats (1 + n)) ‘/

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types | Coinductive types
Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

@ Guarded-by-constructor: every corecursive call is performed directly
under a constructor

@ Same limitations as in the inductive case

nats := cofix nats := An. scons(n, nats (1 + n)) ‘/

nats := An. cofix nats := scons(n, map (Ax.1+x) nats)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types | Coinductive types
Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

@ Guarded-by-constructor: every corecursive call is performed directly
under a constructor

@ Same limitations as in the inductive case

nats := cofix nats := An. scons(n, nats (1 + n)) ‘/

nats := An. cofix nats := scons(n, map (Ax.1+x) nats)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Syntactic-Based Methods for Productivity

Inductive types | Coinductive types
Termination Productivity
Guarded-by-Destructor Guarded-by-Constructor

@ Guarded-by-constructor: every corecursive call is performed directly
under a constructor

@ Same limitations as in the inductive case

nats := cofix nats := An. scons(n, nats (1 + n)) ‘/

nats := An. cofix nats := scons(n, map (Ax.1+x) nats) x

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 17 / 26

Type-Based Methods for Productivity

@ Sized types can be applied to productivity checking as well!

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

@ Sized types can be applied to productivity checking as well!

@ Dual meaning of size annotations on coinductive types
stream(s) A

is the type of streams of which at least s elements can be produced

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

@ Sized types can be applied to productivity checking as well!

@ Dual meaning of size annotations on coinductive types
stream(s) A

is the type of streams of which at least s elements can be produced
@ Size annotations are contra-variant:
rCs
stream(s) T < stream(r) T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

@ Sized types can be applied to productivity checking as well!

@ Dual meaning of size annotations on coinductive types
stream(s) A

is the type of streams of which at least s elements can be produced

@ Size annotations are contra-variant:

rCs sCr
stream(s) T < stream(r) T list(s) T <list(r) T

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 18 / 26

Type-Based Methods for Productivity

@ Typing rules are similar to the inductive case

@ Rules for constructors:

r=EM: A ' N :stream(s) A
I+ scons(M, N) : stream(s) A

@ Cofixpoint definition is also similar to fixpoint definition:

F(f : stream(z) A) = M : stream(7) A
I+ cofix f := M : stream(s) A

1 fresh

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Type-Based Methods for Productivity

@ Typing rules are similar to the inductive case

@ Rules for constructors:

r=EM: A NEN:stream(s)A THEFM:A MEN:list(s) A
I+ scons(M, N) : stream(s) A I+ cons(M, N) : list(s) A

@ Cofixpoint definition is also similar to fixpoint definition:

F(f : stream(z) A) = M : stream(7) A

. v fresh
I+ cofix f := M : stream(s) A

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 19 / 26

Type-Based Methods for Productivity

@ Typing rules are similar to the inductive case

@ Rules for constructors:

r=EM: A NEN:stream(s)A THEFM:A MEN:list(s) A
I+ scons(M, N) : stream(s) A I+ cons(M, N) : list(s) A

@ Cofixpoint definition is also similar to fixpoint definition:

F(f : stream(z) A) = M : stream(7) A

. v fresh
I+ cofix f := M : stream(s) A

F(F < list() A — U) - M : list(7) A — U
I fix f:= M :list(s) A— U

1 fresh

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Co-recursive definitions

Examples

map : (A — B) — stream A — stream B

merge : stream nat — stream nat — stream nat
merge (135...)(246...)=(1234..))

ham := cofix ham : stream nat :=

scons(1, merge (map (Ax.2xx) ham)
(merge (map (Ax.3xx) ham)
(map (Ax.5%x) ham)

ham=(12345689101215...)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Co-recursive definitions

Examples

map : (A — B) — stream(s)A — stream(s)B

merge : stream(s)nat — stream(s)nat — stream(s)nat
merge (135...)(246...)=(1234..))

ham := cofix ham : stream nat :=

scons(1, merge (map (Ax.2xx) ham)
(merge (map (Ax.3xx) ham)
(map (Ax.5%x) ham)

ham=(12345689101215...)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Co-recursive definitions

Examples

map : (A — B) — stream(s)A — stream(s)B

merge : stream(s)nat — stream(s)nat — stream(s)nat
merge (135...)(246...)=(1234..))

ham := cofix ham : stream nat :=
scons(1, merge (map (Ax.2%x) ham®ream{)

(merge (map (Ax.3%x) ham®rem{)

)

(map (Ax.5%x) ham
ham = (123456891012 15...)

stream (2

)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Sized types for coinduction

@ Type-based productivity has several advantages over syntactic-based
» More expressive

Compositional

Easier to understand (specially for ill-typed terms)

Easier to implement (as shown in prototype implementations)

Easier to study (semantically intuitive)

Not intrusive for the user (minimal annotations required)

vV vy VY VvYy

@ Furthermore, sized types treat inductive and co-inductive types in a
similar way

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 21 /26

What's next?

Bruno Barras, Jorge Luis Sacchini e-Based Methods for Termination and Productivity in Coq 22 /26

What's next?

@ Design a type-based termination system for Coq

@ Implementation!

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 22 /26

What's next?

Design a type-based termination system for Coq
Implementation!

Sombrero line (Barthe et al.) : X7, F, CIC™
Sizes are declared implicitly (not first class):

Size inference: little burden for the user

» Constraint-based algorithm
» Treats fixpoints and co-fixpoints in the same way

e 6 ¢ ¢ ¢

Still some issues remain in order to adapt to full Coq

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

In a future Coq version . ..

Fixpoint map ¢ (f : A -> B) (xs : List<:> A) : List<> B :=
match xs with

nil => nil
cons h t => cons (f h) (map f t)
end.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 /26

In a future Coq version . ..

Fixpoint map ¢ (f : A -> B) (xs : List<:> A) : List<> B :=
match xs with

nil => nil
cons h t => cons (f h) (map f t)
end.
Check map.

map : V :. (A -> B) -> List<:> A -> List<i> B.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 /26

In a future Coq version . ..

Fixpoint map ¢ (f : A -> B) (xs : List<:> A) : List<> B :=
match xs with

nil => nil
cons h t => cons (f h) (map f t)
end.
Check map.

map : V :. (A -> B) -> List<:> A -> List<i> B.

Fixpoint ntail ¢ A (x : nat<:>) : List A — List A :=

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 /26

In a future Coq version . ..

Fixpoint map ¢ (f : A -> B) (xs : List<:> A) : List<> B :=
match xs with

nil => nil
cons h t => cons (f h) (map f t)
end.
Check map.

map : V :. (A -> B) -> List<:> A -> List<i> B.

Fixpoint ntail ¢ A (x : nat<:>) : List A — List A :=

Check ntail.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 /26

In a future Coq version . ..

Fixpoint map ¢ (f : A -> B) (xs : List<:> A) : List<> B :=
match xs with

nil => nil
cons h t => cons (f h) (map f t)
end.
Check map.

map : V :. (A -> B) -> List<:> A -> List<i> B.

Fixpoint ntail ¢ A (x : nat<:>) : List A — List A :=

Check ntail.
ntail : V ¢ V 5. forall A, nat<:> -> List<j> A -> List<;> A.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 /26

In a future Coq version . ..

Fixpoint map ¢ (f : A -> B) (xs : List<:> A) : List<> B :=
match xs with

nil => nil
cons h t => cons (f h) (map f t)
end.
Check map.

map : V :. (A -> B) -> List<:> A -> List<i> B.
Fixpoint ntail ¢ A (x : nat<:>) : List A — List A :=
Check ntail.

ntail : VoV 51 V 50. 20 E 51 =
forall A, nat<:> -> List<j;> A -> List<j»> A.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 23 /26

Summary

@ Keep extending the guard condition is not sustainable

@ Time is right to rethink termination checking in Coq
@ Sized types seem to be an ideal candidate

» More expressive
» Compositional
» Easier to study and implement

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Summary

@ Keep extending the guard condition is not sustainable
@ Time is right to rethink termination checking in Coq

@ Sized types seem to be an ideal candidate

» More expressive
» Compositional
» Easier to study and implement

@ Project to start at CMU-Q in September
» Careful design before implementation

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Summary

@ Keep extending the guard condition is not sustainable
@ Time is right to rethink termination checking in Coq
@ Sized types seem to be an ideal candidate

» More expressive

» Compositional

» Easier to study and implement
@ Project to start at CMU-Q in September

» Careful design before implementation

@ Is this an opportunity to rethink coinduction in Coq?

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

Summary

@ Keep extending the guard condition is not sustainable
@ Time is right to rethink termination checking in Coq
@ Sized types seem to be an ideal candidate

» More expressive

» Compositional

» Easier to study and implement
@ Project to start at CMU-Q in September

» Careful design before implementation

@ Is this an opportunity to rethink coinduction in Coq?

Thank you!

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

A note on coinduction with dependent types

@ Coinduction in Coq is broken: it does not satisfy type preservation

@ The problem: cofixpoint unfolding is only allowed inside case analysis
case (cofix f := M) of ... — case M[f := (cofix f := M)] of ...

@ Already observed by Giménez in 1996
@ Some promising ideas: OTT (McBride) and copatterns (Abel et al.)

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 25 /26

A note on coinduction with dependent types

@ Example: consider a co-inductive type U with only one costructor

in:U— U
u:U force : U — U
def .. . def . .
u= cofix u:=inu force = Ax.case xof inx’ = inx’

@ We can prove that x = force x for any x : U

eq: Nx : U.x = force x

def .
eq = Ax.case xof inx' = refl

@ Then, equ : u = force u,

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

A note on coinduction with dependent types

@ Example: consider a co-inductive type U with only one costructor

in:U— U
u:U force : U — U
def .. . def . .
u= cofix u:=inu force = Ax.case xof inx’ = inx’

@ We can prove that x = force x for any x : U

eq: Nx : U.x = force x

def .
eq = Ax.case xof inx' = refl

@ Then, equ:u=inu,

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

A note on coinduction with dependent types

@ Example: consider a co-inductive type U with only one costructor

in:U— U
u:U force : U — U
def .. . def . .
u= cofix u:=inu force = Ax.case xof inx’ = inx’

@ We can prove that x = force x for any x : U

eq: Nx : U.x = force x

def .
eq = Ax.case xof inx' = refl

@ Then, equ:u=inu, and equ —* refl

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

A note on coinduction with dependent types

@ Example: consider a co-inductive type U with only one costructor

in:U— U
u:U force : U — U
def .. . def . .
u= cofix u:=inu force = Ax.case xof inx’ = inx’

@ We can prove that x = force x for any x : U

eq: Nx : U.x = force x

def .
eq = Ax.case xof inx' = refl

@ Then, equ:u=inu, and equ —* refl

@ Butrefl:u=u

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq

A note on coinduction with dependent types

@ Example: consider a co-inductive type U with only one costructor

in:U— U
u:U force : U — U
def .. . def . .
u= cofix u:=inu force = Ax.case xof inx’ = inx’

@ We can prove that x = force x for any x : U

eq: Nx : U.x = force x

def .
eq = Ax.case x of inx’ = refl

@ Then, equ:u=inu, and equ —* refl
@ Butrefl:u=u

@ The types u = u and u = in u are not convertible since there is no
case forcing the unfolding of w.

Bruno Barras, Jorge Luis Sacchini Type-Based Methods for Termination and Productivity in Coq 26 / 26

	Appendix

