A New Formalization of Power Series in Coq

Catherine Lelay

Toccata, Inria Saclay – Île-de-France LRI, Université Paris-Sud

> 5th Coq Workshop Rennes, July 22nd

The Coquelicot project

- Goal :
 - build a user-friendly library of real analysis in Coq.

The Coquelicot project

- Goal :
 - build a user-friendly library of real analysis in Coq.
- Previous work [CPP' 2012] :
 - total functions to easily write limits, derivatives and integrals,
 - tactic to automatize proofs of differentiability.

A few words about limits of sequences

Definition of limit in the style of the standard library:

```
Definition Lim_seq (u_n)_{n\in\mathbb{N}} (pr : {1 : R | Un_cv(u_n)_{n\in\mathbb{N}}1}) := projT1 pr.
```

with dependent type

A few words about limits of sequences

Definition Lim_seq
$$(u_n)_{n\in\mathbb{N}}:=$$

$$\frac{\overline{\lim}\,(u_n)+\underline{\lim}\,(u_n)}{2}\in\overline{\mathbb{R}}$$
 total function without dependent type

A few words about limits of sequences

Definition Lim_seq
$$(u_n)_{n\in\mathbb{N}}:=$$

$$\frac{\overline{\lim}\,(u_n)+\underline{\lim}\,(u_n)}{2}\in\overline{\mathbb{R}}$$
 total function without dependent type

Some other user-friendly definitions:

•
$$\lim_{t \to \mathbf{x}} f(t) := \lim_{s \to \mathbf{x}} \left(f\left(x_{n}\right) \right)_{n \in \mathbb{N}} \in \overline{\mathbb{R}} \text{ when } \lim \left(x_{n}\right)_{n \in \mathbb{N}} = \mathbf{x}$$

• Derive
$$f$$
 (x : R) := $\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right) \in \mathbb{R}$

• RInt
$$f$$
 (a b : R) := Lim_seq $\left(\frac{b-a}{n}\sum_{k=0}^n f\left(x_k\right)\right)_{n\in\mathbb{N}}\in\mathbb{R}$

Some applications

• D'Alembert Formula [CPP' 2012] $u(x,t) = \frac{1}{2} \left[u_0(x+ct) + u_0(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(\xi) d\xi + \frac{1}{2c} \int_0^t \int_{x-c(t-\tau)}^{x+ct} f(\xi,\tau) d\xi d\tau d\xi \right]$ $\frac{\partial^2 u}{\partial x^2}(x,t) - c \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t)$

 Convergence of a sequence based on algebraic-geometric means [Bertot 2013]

$$a_0 = 1, \ b_0 = \frac{1}{x}, \ a_{n+1} = \frac{a_n + b_n}{2}, \ b_{n+1} = \sqrt{a_n b_n} \text{ and } f(x) = \lim a_n = \lim b_n \Rightarrow \pi = 2\sqrt{2} \ f\left(\frac{1}{\sqrt{2}}\right) / f'\left(\frac{1}{\sqrt{2}}\right)$$

Baccalaureate of Mathematics 2013 [BAC 2013]

$$\int_{\underline{\mathbf{1}}}^{1} \frac{2 + 2 \ln x}{x} \, dx = 1$$

Motivations to build power series

Some of the many uses of power series:

- basic functions $(e^x, \sin, \cos, ...)$,
- solutions for differential equations,
- equivalent functions,
- generating functions, . . .
- \Rightarrow must be formalized in a library of real analysis.

Coq standard library

- about sequences
 - ullet two different definitions for limits toward finite limit and $+\infty$
 - limits of sums, opposites, products, and multiplicative inverses of sequences in the finite case
- about power series
 - series of real numbers provide convergence criteria
 - sequences of functions provide continuity and differentiability

Coq standard library

- about sequences
 - ullet two different definitions for limits toward finite limit and $+\infty$
 - limits of sums, opposites, products, and multiplicative inverses of sequences in the finite case
- about power series
 - series of real numbers provide convergence criteria
 - sequences of functions provide continuity and differentiability
- not in the standard library:
 - single definition for both finite and infinite limits $(\pm \infty)$
 - limits of sums, opposites, products, and multiplicative inverses of sequences in the infinite case
 - arithmetic operations on power series
 - integrability of power series

Coq standard library

- about sequences
 - ullet two different definitions for limits toward finite limit and $+\infty$
 - limits of sums, opposites, products, and multiplicative inverses of sequences in the finite case
- about power series
 - series of real numbers provide convergence criteria
 - sequences of functions provide continuity and differentiability
- in the Coquelicot library:
 - single definition for both finite and infinite limits $(\pm \infty)$
 - limits of sums, opposites, products, and multiplicative inverses of sequences in the infinite case
 - arithmetic operations on power series
 - integrability of power series

Coquelicot library - CPP version

Coquelicot library – present version

Definition

Series:

Series
$$(a_n)_{n\in\mathbb{N}}=$$
 Lim_seq $\left(\sum_{k=0}^n a_k
ight)_{n\in\mathbb{N}}$

Power series:

PSeries
$$(a_n)_{n\in\mathbb{N}}=$$
 Series $(a_kx^k)_{n\in\mathbb{N}}$

Definition

Series:

Series
$$(a_n)_{n\in\mathbb{N}}=$$
 Lim_seq $\left(\sum_{k=0}^n a_k
ight)_{n\in\mathbb{N}}$

Power series:

PSeries
$$(a_n)_{n\in\mathbb{N}}$$
 = Series $(a_k x^k)_{n\in\mathbb{N}}$

inherit all the good properties of Lim_seq

- easy to write
- some rewritings without hypothesis

Use-case: Bessel Functions

$$J_n = \left(\frac{x}{2}\right)^n \sum_{n=0}^{+\infty} \frac{(-1)^p}{p!(n+p)!} \left(\left(\frac{x}{2}\right)^2\right)^p$$

Use-case: Bessel Functions

$$J_n = \left(\frac{x}{2}\right)^n \sum_{n=0}^{+\infty} \frac{(-1)^p}{p!(n+p)!} \left(\left(\frac{x}{2}\right)^2\right)^p$$

•
$$J_n''(x) + x \cdot J_n'(x) + (x^2 - n^2) \cdot J_n(x) = 0$$

$$J_{n+1}(x) = \frac{n \cdot J_n(x)}{x} - J'_n(x)$$

•
$$J_{n+1}(x) - J_{n-1}(x) = \frac{2n}{x} J_n(x)$$

•
$$J_{n+1}(x) - J_{n-1}(x) = -2 \cdot J'_n(x)$$

Use-case: Bessel Functions

$$J_n = \left(\frac{x}{2}\right)^n \sum_{n=0}^{+\infty} \frac{(-1)^p}{p!(n+p)!} \left(\left(\frac{x}{2}\right)^2\right)^p$$

•
$$J_n''(x) + x \cdot J_n'(x) + (x^2 - n^2) \cdot J_n(x) = 0$$

$$J_{n+1}(x) = \frac{n \cdot J_n(x)}{x} - J'_n(x)$$

•
$$J_{n+1}(x) - J_{n-1}(x) = \frac{2n}{x} J_n(x)$$

•
$$J_{n+1}(x) - J_{n-1}(x) = -2 \cdot J'_n(x)$$

$$J_n''(x) + x \cdot J_n'(x) + (x^2 - n^2)J_n(x) = 0$$

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$\left(\left(\frac{x}{2}\right)^n\sum_{p=0}^{+\infty}a_p^{(n)}X^p\right)^{\prime\prime}+x\cdot\left(\left(\frac{x}{2}\right)^n\sum_{p=0}^{+\infty}a_p^{(n)}X^p\right)^{\prime}+\left(x^2-n^2\right)\left(\frac{x}{2}\right)^n\sum_{p=0}^{+\infty}a_p^{(n)}X^p=0$$

Needed operations on power series:

• function to write power series

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$X\left(\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}\right)^{n}+(n+1)\left(\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}\right)^{n}+\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}=0$$

Needed operations on power series:

• function to write power series

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$X\sum_{p=0}^{+\infty}\left((p+1)(p+2)a_{p+2}^{(n)}X^{p}\right)+(n+1)\sum_{p=0}^{+\infty}\left((p+1)a_{p+1}^{(n)}X^{p}\right)+\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}=0$$

- function to write power series
- differentiability

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$\sum_{p=0}^{+\infty} \left(p(p+1) a_{p+1}^{(n)} X^p \right) + (n+1) \sum_{p=0}^{+\infty} \left((p+1) a_{p+1}^{(n)} X^p \right) + \sum_{p=0}^{+\infty} a_p^{(n)} X^p = 0$$

- function to write power series
- differentiability
- variable multiplication

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$\sum_{n=0}^{+\infty} \left(p(p+1)a_{p+1}^{(n)} + (n+1)(p+1)a_{p+1}^{(n)} + a_p^{(n)} \right) X^p = 0$$

- function to write power series
- differentiability
- variable multiplication
- arithmetic operations

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$\forall p \in \mathbb{N}, \quad p(p+1)a_{p+1}^{(n)} + (n+1)(p+1)a_{p+1}^{(n)} + a_p^{(n)} = 0$$

- function to write power series
- differentiability
- variable multiplication
- arithmetic operations
- extensionality

with
$$a_p^{(n)} = \frac{(-1)^p}{p!(n+p)!}$$
 and $X = (\frac{x}{2})^2$:

$$orall p \in \mathbb{N}, \quad a_{p+1}^{(n)} = rac{-a_p^{(n)}}{(p+1)(n+p+1)}$$

- function to write power series
- differentiability
- variable multiplication
- arithmetic operations
- extensionality

Unicity

$$X\left(\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}\right)''+(n+1)\left(\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}\right)'+\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}=0$$

$$\forall p \in \mathbb{N}, \quad a_{p+1}^{(n)} = \frac{-a_p^{(n)}}{(p+1)(n+p+1)}$$

Unicity

$$X\left(\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}\right)''+(n+1)\left(\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}\right)'+\sum_{p=0}^{+\infty}a_{p}^{(n)}X^{p}=0$$

$$orall p \in \mathbb{N}, \quad a_{p+1}^{(n)} = rac{-a_p^{(n)}}{(p+1)(n+p+1)}$$

Operations on Series

scalar multiplication:

$$c \cdot \sum_{n \in \mathbb{N}} a_n = \sum_{n \in \mathbb{N}} (c \cdot a_n)$$
, without hypothesis.

• index shift:
$$\forall k \in \mathbb{N}^*$$
, $\sum_{n=0}^{k-1} a_n + \sum_{n \in \mathbb{N}} a_{n+k} = \sum_{n \in \mathbb{N}} a_n$, if $\sum a_n$ are convergent or $\forall n < k, a_n = 0$.

Operations on Series

scalar multiplication:

$$c \cdot \sum_{n \in \mathbb{N}} a_n = \sum_{n \in \mathbb{N}} (c \cdot a_n)$$
, without hypothesis.

• index shift:
$$\forall k \in \mathbb{N}^*$$
, $\sum_{n=0}^{N-1} a_n + \sum_{n \in \mathbb{N}} a_{n+k} = \sum_{n \in \mathbb{N}} a_n$, if $\sum_{n \in \mathbb{N}} a_n$ are convergent or $\forall n < k, a_n = 0$.

• addition:
$$\sum_{n\in\mathbb{N}}a_n+\sum_{n\in\mathbb{N}}b_n=\sum_{n\in\mathbb{N}}(a_n+b_n),$$
 if $\sum a_n$ and $\sum b_n$ are convergent.

Operations on Series

scalar multiplication:

$$c \cdot \sum_{n \in \mathbb{N}} a_n = \sum_{n \in \mathbb{N}} (c \cdot a_n)$$
, without hypothesis.

• index shift:
$$\forall k \in \mathbb{N}^*$$
, $\sum_{n=0}^{k-1} a_n + \sum_{n \in \mathbb{N}} a_{n+k} = \sum_{n \in \mathbb{N}} a_n$, if $\sum_{n \in \mathbb{N}} a_n$ are convergent or $\forall n < k, a_n = 0$.

• addition:
$$\sum_{n \in \mathbb{N}} a_n + \sum_{n \in \mathbb{N}} b_n = \sum_{n \in \mathbb{N}} (a_n + b_n),$$

if $\sum a_n$ and $\sum b_n$ are convergent.

• multiplication:
$$\sum_{n\in\mathbb{N}} a_n \cdot \sum_{n\in\mathbb{N}} b_n = \sum_{n\in\mathbb{N}} \left(\sum_{k=0}^n a_k \cdot b_{n-k} \right),$$
 if $\sum |a_n|$ and $\sum |b_n|$ are convergent.

Operations on Power Series

scalar multiplication:

$$c \cdot \sum_{n \in \mathbb{N}} a_n x^n = \sum_{n \in \mathbb{N}} (c \cdot a_n) x^n$$

• multiplication by a variable:

$$\forall k \in \mathbb{N}, \quad x^k \cdot \sum_{n \in \mathbb{N}} a_n x^n = \sum_{n \in \mathbb{N}} a_{n-k} x^n$$

No hypothesis

if $\sum a_n x^n$ and $\sum b_n x^n$ are convergent.

- addition: $\sum_{n \in \mathbb{N}} a_n x^n + \sum_{n \in \mathbb{N}} b_n x^n = \sum_{n \in \mathbb{N}} (a_n + b_n) x^n,$
- multiplication: $\sum_{n \in \mathbb{N}} a_n \mathbf{x}^n \cdot \sum_{n \in \mathbb{N}} b_n \mathbf{x}^n = \sum_{n \in \mathbb{N}} \left(\sum_{k=0}^n a_k \cdot b_{n-k} \right) \mathbf{x}^n,$ if $\sum |a_n \mathbf{x}^n|$ and $\sum |b_n \mathbf{x}^n|$ are convergent.

- Convergence circle
- Differentiability
- Sequences of functions

Convergence circle

$$\mathcal{C}_a = \sup \left\{ r \in \mathbb{R} \; \middle| \; \sum |a_n r^n| \; \text{is convergent}
ight\} \in \overline{\mathbb{R}}$$

Convergence circle

$$\mathcal{C}_a = \sup \Big\{ r \in \mathbb{R} \; \Big| \; \sum |a_n r^n| \; \text{is convergent} \Big\} \in \overline{\mathbb{R}}$$

Formally proved:

- Equality with sup $\{r \in \mathbb{R} \mid |a_n r^n| \text{ is bounded}\}$
- Compatibility with operations (e.g.: $C_{a+b} \ge \min\{C_a, C_b\}$)

Convergence circle

$$\mathcal{C}_a = \sup \left\{ r \in \mathbb{R} \; \middle| \; \sum |a_n r^n| \; \text{is convergent}
ight\} \in \overline{\mathbb{R}}$$

Formally proved:

- Equality with sup $\{r \in \mathbb{R} \mid |a_n r^n| \text{ is bounded}\}$
- Compatibility with operations (e.g.: $C_{a+b} \ge \min \{C_a, C_b\}$)
- If $|x| < C_a$, then $\sum a_n x^n$ is absolutely convergent
- If $|x| > C_a$, then $\sum a_n x^n$ is strongly divergent

Differentiability

To write

If
$$|x| < \mathcal{C}_a$$
, then $\left(\sum_{n \in \mathbb{N}} a_n x^n\right)' = \sum_{n \in \mathbb{N}} (n+1) a_{n+1} x^n$:

Power Series

000000000

using the Coq standard library:

```
Lemma Derive_PSeries (a : nat -> R) (cv_a : R) :
  forall (PS: forall x: R, Rabs x < cv_a -> {1: R | Pser a x 1})
    (PS': forall x : R. Rabs x < cv a ->
          {1 : R | Pser (fun n : nat => INR (S n) * a (S n)) x 1})
    (pr : forall x : R, Rabs x < cv_a ->
        derivable_pt (fun y : R =>
          match Rlt_dec (Rabs y) cv_a with
          | left Hy => projT1 (PS y Hy)
          | right => 0
          end) x)
    (x : R) (Hx : Rabs x < cv_a),
  derive_pt (fun y : R =>
    match Rlt_dec (Rabs y) cv_a with
    | left Hy => projT1 (PS y Hy)
    | right _ => 0
    end) x (pr x Hx) = proiT1 (PS' x Hx)
```

Differentiability

To write

If
$$|x| < \mathcal{C}_a$$
, then $\left(\sum_{n \in \mathbb{N}} a_n x^n\right)' = \sum_{n \in \mathbb{N}} (n+1) a_{n+1} x^n$:

using the Coquelicot library:

Differentiability

To write

If
$$|x| < C_a$$
, then $\left(\sum_{n \in \mathbb{N}} a_n x^n\right)^{\binom{k}{n}} = \sum_{n \in \mathbb{N}} \frac{(n+\frac{k}{n})!}{n!} a_{n+\frac{k}{n}} x^n$:

using the Coquelicot library:

Sequences of function

Useful for:

- Power series $\sum a_n x^n$
- Fourier series $\sum a_n \cos(nx) + b_n \sin(nx)$
- ...

Sequences of function

Useful for:

- Power series $\sum a_n x^n$
- Fourier series $\sum a_n \cos(nx) + b_n \sin(nx)$
- ...

Formally proved:

limits:

$$\begin{array}{l} \forall \left(f_{n}\right)_{n\in\mathbb{N}} \text{ a sequence of functions, } D \text{ an open subset of } \mathbb{R},\\ \text{if } \left(f_{n}\right)_{n\in\mathbb{N}} \text{ is uniformly convergent and}\\ \forall x\in D, \forall n\in\mathbb{N}, \lim_{t\to x} f(t) \text{ exists, then}\\ \forall x\in D, \lim_{t\to x} \left(\lim_{n\to +\infty} \left(f_{n}(t)\right)\right) = \lim_{n\to +\infty} \left(\lim_{t\to x} f_{n}(t)\right) \end{array}$$

Sequences of function

Useful for:

- Power series $\sum a_n x^n$
- Fourier series $\sum a_n \cos(nx) + b_n \sin(nx)$
- ...

Formally proved:

limits:

$$\forall \, (f_n)_{n \in \mathbb{N}} \text{ a sequence of functions, } D \text{ an open subset of } \mathbb{R},$$
 if $(f_n)_{n \in \mathbb{N}}$ is uniformly convergent and
$$\forall x \in D, \forall n \in \mathbb{N}, \lim_{t \to x} f(t) \text{ exists, then}$$

$$\forall x \in D, \lim_{t \to x} \left(\lim_{n \to +\infty} (f_n(t))\right) = \lim_{n \to +\infty} \left(\lim_{t \to x} f_n(t)\right)$$

- continuity
- differentiability

Power series in other proof assistants

C-CoRN, HOL Light, Isabelle/HOL, PVS:

- two different notions of finite and infinite convergence circle
- series of real numbers provide
 - various convergence theorems
- sequences of functions provide
 - differentiability
 - integrability

Power series in other proof assistants

C-CoRN, HOL Light, Isabelle/HOL, PVS:

- two different notions of finite and infinite convergence circle
- series of real numbers provide
 - various convergence theorems
- sequences of functions provide
 - differentiability
 - integrability

but results are not explicitly power series

Conclusion

New power series for Cog:

• easy to use:

$$\begin{cases} \mathcal{C}_{J_n} = +\infty & : 41 \text{ LoC} \\ J_{n+1}(x) + J_{n-1}(x) = \frac{2n}{x} J_n(x) & : 35 \text{ LoC} \\ x^2 \cdot J_n''(x) + x \cdot J_n'(x) + (x^2 - n^2) \cdot J_n(x) = 0 & : 94 \text{ LoC} \end{cases}$$

Conclusion

New power series for Cog:

easy to use:

$$\begin{cases} C_{J_n} = +\infty & : 41 \text{ LoC} \\ J_{n+1}(x) + J_{n-1}(x) = \frac{2n}{x} J_n(x) & : 35 \text{ LoC} \\ x^2 \cdot J_n''(x) + x \cdot J_n'(x) + (x^2 - n^2) \cdot J_n(x) = 0 & : 94 \text{ LoC} \end{cases}$$

• with a proper notion of convergence circle

Conclusion

New power series for Cog:

easy to use:

$$\begin{cases} C_{J_n} = +\infty & : 41 \text{ LoC} \\ J_{n+1}(x) + J_{n-1}(x) = \frac{2n}{x} J_n(x) & : 35 \text{ LoC} \\ x^2 \cdot J_n''(x) + x \cdot J_n'(x) + (x^2 - n^2) \cdot J_n(x) = 0 & : 94 \text{ LoC} \end{cases}$$

with a proper notion of convergence circle

	Nb. Definitions	Nb. Lemmas	Nb. Lines
Series	3	47	764
PSeries	13	70	1674

Available at: http://coquelicot.saclay.inria.fr/

Perspectives

- About Power Series:
 - Composition
 - Quotient
 - Automation

Perspectives

- About Power Series:
 - Composition
 - Quotient
 - Automation
- About Real Analysis:
 - Left and right limits
 - Equivalent functions
 - Automation for limits, integrals and equivalents

Perspectives

- About Power Series:
 - Composition
 - Quotient
 - Automation
- About Real Analysis:
 - Left and right limits
 - Equivalent functions
 - Automation for limits, integrals and equivalents
- To go further: complex numbers

Bibliography

- Sylvie Boldo and Catherine Lelay and Guillaume Melquiond Improving Real Analysis in Coq: a User-Friendly Approach to Integrals and Derivatives
 - Proceedings of the Second International Conference on Certified Programs and Proofs, 289–304, 2012
- Yves Bertot
 www-sop.inria.fr/members/Yves.Bertot/proofs.html
- Catherine Lelay www.lri.fr/~lelay/

Limits' troubles

Definition Lim_seq
$$(u_n)_{n\in\mathbb{N}} := \frac{\overline{\lim}(u_n) + \underline{\lim}(u_n)}{2} \in \overline{\mathbb{R}}$$

- Lim_seq $(-1)^n = 0$
- Lim_fct $x^{-1} = +\infty$

As on paper: can be written, but no meaning without proof of convergence

Left and right limits

Actual alternative on left and right limits:

$$\lim_{x \to 0^+} x^{-1} = \mathop{\rm Lim_fct}_{x \to 0} \; |x|^{-1} \; \text{and} \; \lim_{x \to 0^+} x^{-1} = \mathop{\rm Lim_fct}_{x \to 0} \; (-\,|x|)^{-1}$$