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Introduction Power Series Conclusion

The Coquelicot project

Goal :
build a user-friendly library of real analysis in Coq.

Previous work [CPP’ 2012] :
total functions to easily write limits, derivatives and integrals,
tactic to automatize proofs of differentiability.
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A few words about limits of sequences

Definition of limit in the style of the standard library:
Definition Lim_seq (un)n∈N

(pr : {l : R | Un_cv(un)n∈Nl}) :=

projT1 pr.
lim (un) + lim (un)

2
∈ R

total function
with dependent type

Some other user-friendly definitions:
Lim
t→x

f (t) := Lim_seq (f (xn))n∈N ∈ R when lim (xn)n∈N = x

Derive f (x : R) := Lim
h→0

(
f (x + h)− f (x)

h

)
∈ R

RInt f (a b : R) := Lim_seq

(
b − a

n

n∑
k=0

f (xk)

)
n∈N

∈ R
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Some applications

D’Alembert Formula [CPP’ 2012]
u(x , t) = 1

2 [u0(x + ct) + u0(x − ct)] + 1
2c

∫ x+ct
x−ct u1(ξ) dξ

+ 1
2c

∫ t
0

∫ x+c(t−τ)
x−c(t−τ) f (ξ, τ) dξ dτ

∂2u
∂t2 (x , t)− c ∂

2u
∂x2 (x , t) = f (x , t)

Convergence of a sequence based on algebraic-geometric
means [Bertot 2013]
a0 = 1, b0 = 1

x , an+1 =
an+bn

2 , bn+1 =
√

anbn and
f (x) = lim an = lim bn ⇒ π = 2

√
2 f
(

1√
2

)/
f ′
(

1√
2

)
Baccalaureate of Mathematics 2013 [BAC 2013]∫ 1

1
e

2+ 2 ln x
x

dx = 1
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Motivations to build power series

Some of the many uses of power series:
basic functions (ex , sin, cos, . . . ),
solutions for differential equations,
equivalent functions,
generating functions, . . .

⇒ must be formalized in a library of real analysis.
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Coq standard library

about sequences
two different definitions for limits toward finite limit and +∞
limits of sums, opposites, products, and multiplicative inverses
of sequences in the finite case

about power series
series of real numbers provide convergence criteria
sequences of functions provide continuity and differentiability

in the Coquelicot library:
single definition for both finite and infinite limits (±∞)
limits of sums, opposites, products, and multiplicative inverses
of sequences in the infinite case
arithmetic operations on power series
integrability of power series
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Coquelicot library – CPP version

standard library - Reals

sup (un)n∈N

lim (un)n∈N

lim
t→x

f (t)

f ′(x)

∑
n∈N

an

∑
n∈N

anxn

∫ b

a
f (t) dt

∈ R = R ∪ {±∞}

∈ R

∈ R = R ∪ {±∞}
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Coquelicot library – present version

standard library - Reals

sup (un)n∈N

lim (un)n∈N

lim
t→x

f (t)

f ′(x)

∑
n∈N

an

∑
n∈N

anxn

∫ b

a
f (t) dt

∈ R = R ∪ {±∞}

∈ R

∈ R = R ∪ {±∞}

∑
n∈N

an

∑
n∈N

anxn

7 / 21



Introduction Power Series Conclusion

Definition

Series:

Series (an)n∈N = Lim_seq

(
n∑

k=0

ak

)
n∈N

Power series:
PSeries (an)n∈N = Series

(
akxk

)
n∈N

inherit all the good properties of Lim_seq

easy to write
some rewritings without hypothesis
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Use-case: Bessel Functions

Jn =
(x
2

)n +∞∑
p=0

(−1)p

p!(n + p)!

((x
2

)2)p

J ′′n (x) + x · J ′n(x) + (x2 − n2) · Jn(x) = 0

Jn+1(x) =
n · Jn(x)

x
− J ′n(x)

Jn+1(x)− Jn−1(x) =
2n
x

Jn(x)

Jn+1(x)− Jn−1(x) = −2 · J ′n(x)
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Example: differential equation

with a(n)p =
(−1)p

p!(n + p)!
and X =

(x
2

)2
:

J ′′n (x) + x · J ′n(x) + (x2 − n2)Jn(x) = 0

Needed operations on power series:

function to write power series
differentiability
variable multiplication
arithmetic operations
extensionality
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2
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a(n)
p X p

)′′

+ x ·

((x
2

)n +∞∑
p=0

a(n)
p X p

)′

+
(
x2 − n2) (x

2
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:

+∞∑
p=0

(
p(p + 1)a(n)

p+1 + (n + 1)(p + 1)a(n)
p+1 + a(n)

p

)
X p = 0

Needed operations on power series:
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Example: differential equation

with a(n)p =
(−1)p

p!(n + p)!
and X =

(x
2

)2
:

∀p ∈ N, p(p + 1)a(n)p+1 + (n + 1)(p + 1)a(n)p+1 + a(n)p = 0

Needed operations on power series:
function to write power series
differentiability
variable multiplication
arithmetic operations
extensionality
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Example: differential equation

with a(n)p =
(−1)p

p!(n + p)!
and X =

(x
2

)2
:

∀p ∈ N, a(n)p+1 =
−a(n)p

(p + 1)(n + p + 1)

Needed operations on power series:
function to write power series
differentiability
variable multiplication
arithmetic operations
extensionality
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Unicity

X

+∞∑
p=0

a(n)p X p

′′ + (n + 1)

+∞∑
p=0

a(n)p X p

′ + +∞∑
p=0

a(n)p X p = 0

∀p ∈ N, a(n)p+1 =
−a(n)p

(p + 1)(n + p + 1)
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Operations on Series

scalar multiplication:
c ·
∑
n∈N

an =
∑
n∈N

(c · an), without hypothesis.

index shift: ∀k ∈ N∗,
k−1∑
n=0

an +
∑
n∈N

an+k =
∑
n∈N

an,

if
∑

an are convergent or ∀n < k , an = 0.

addition:
∑
n∈N

an +
∑
n∈N

bn =
∑
n∈N

(an + bn),

if
∑

an and
∑

bn are convergent.

multiplication:
∑
n∈N

an ·
∑
n∈N

bn =
∑
n∈N

(
n∑

k=0

ak · bn−k

)
,

if
∑
|an| and

∑
|bn| are convergent.

12 / 21



Introduction Power Series Conclusion

Operations on Series

scalar multiplication:
c ·
∑
n∈N

an =
∑
n∈N

(c · an), without hypothesis.

index shift: ∀k ∈ N∗,
k−1∑
n=0

an +
∑
n∈N

an+k =
∑
n∈N

an,

if
∑

an are convergent or ∀n < k , an = 0.

addition:
∑
n∈N

an +
∑
n∈N

bn =
∑
n∈N

(an + bn),

if
∑

an and
∑

bn are convergent.

multiplication:
∑
n∈N

an ·
∑
n∈N

bn =
∑
n∈N

(
n∑

k=0

ak · bn−k

)
,

if
∑
|an| and

∑
|bn| are convergent.

12 / 21



Introduction Power Series Conclusion

Operations on Series

scalar multiplication:
c ·
∑
n∈N

an =
∑
n∈N

(c · an), without hypothesis.

index shift: ∀k ∈ N∗,
k−1∑
n=0

an +
∑
n∈N

an+k =
∑
n∈N

an,

if
∑

an are convergent or ∀n < k , an = 0.

addition:
∑
n∈N

an +
∑
n∈N

bn =
∑
n∈N

(an + bn),

if
∑

an and
∑

bn are convergent.

multiplication:
∑
n∈N

an ·
∑
n∈N

bn =
∑
n∈N

(
n∑

k=0

ak · bn−k

)
,

if
∑
|an| and

∑
|bn| are convergent.

12 / 21



Introduction Power Series Conclusion

Operations on Power Series

scalar multiplication:
c ·
∑
n∈N

anxn =
∑
n∈N

(c · an) xn

multiplication by a variable:

∀k ∈ N, xk ·
∑
n∈N

anxn =
∑
n∈N

an−kxn


No hypothesis

addition:
∑
n∈N

anxn +
∑
n∈N

bnxn =
∑
n∈N

(an + bn) xn,

if
∑

anxn and
∑

bnxn are convergent.

multiplication:
∑
n∈N

anxn ·
∑
n∈N

bnxn =
∑
n∈N

(
n∑

k=0

ak · bn−k

)
xn,

if
∑
|anxn| and

∑
|bnxn| are convergent.
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Some features related to power series

Convergence circle
Differentiability
Sequences of functions

14 / 21



Introduction Power Series Conclusion

Convergence circle

Ca = sup
{

r ∈ R
∣∣∣ ∑ |anrn| is convergent

}
∈ R

Formally proved:
Equality with sup {r ∈ R | |anrn| is bounded}
Compatibility with operations (e.g.: Ca+b ≥ min {Ca, Cb})
If |x | < Ca, then

∑
anxn is absolutely convergent

If |x | > Ca, then
∑

anxn is strongly divergent
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Differentiability

To write

If |x | < Ca, then

(∑
n∈N

anxn

)′
=
∑
n∈N

(n + 1)an+1xn:

using the Coq standard library:
Lemma Derive_PSeries (a : nat -> R) (cv_a : R) :

forall (PS : forall x : R, Rabs x < cv_a -> {l : R | Pser a x l})
(PS’ : forall x : R, Rabs x < cv_a ->

{l : R | Pser (fun n : nat => INR (S n) * a (S n)) x l})
(pr : forall x : R, Rabs x < cv_a ->

derivable_pt (fun y : R =>
match Rlt_dec (Rabs y) cv_a with
| left Hy => projT1 (PS y Hy)
| right _ => 0
end) x)

(x : R) (Hx : Rabs x < cv_a),
derive_pt (fun y : R =>

match Rlt_dec (Rabs y) cv_a with
| left Hy => projT1 (PS y Hy)
| right _ => 0
end) x (pr x Hx) = projT1 (PS’ x Hx)

16 / 21
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Differentiability

To write

If |x | < Ca, then

(∑
n∈N

anxn

)′
=
∑
n∈N

(n + 1)an+1xn:

using the Coquelicot library:

Lemma Derive_PSeries (a : nat -> R) :
forall x : R, Rbar_lt (Rabs x) (CV_circle a) ->

Derive (PSeries a) x
= PSeries (fun n : nat => INR (S n) * a (S n)) x.
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Differentiability

To write

If |x | < Ca, then

(∑
n∈N

anxn

)(k)

=
∑
n∈N

(n + k)!
n!

an+kxn:

using the Coquelicot library:

Lemma Derive_n_PSeries (k : nat) (a : nat -> R) :
forall x : R, Rbar_lt (Rabs x) (CV_circle a) ->

Derive_n (PSeries a) n x
= PSeries (fun n : nat =>

(INR (fact (n + k)) / INR (fact n)) * a (n + k)) x.
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Sequences of function

Useful for:
Power series

∑
anxn

Fourier series
∑

an cos(nx) + bn sin(nx)
...

Formally proved:
limits:
∀ (fn)n∈N a sequence of functions, D an open subset of R,

if (fn)n∈N is uniformly convergent and
∀x ∈ D,∀n ∈ N, limt→x f (t) exists, then

∀x ∈ D, lim
t→x

(
lim

n→+∞
(fn(t))

)
= lim

n→+∞

(
lim
t→x

fn(t)
)

continuity
differentiability
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Power series in other proof assistants

C-CoRN, HOL Light, Isabelle/HOL, PVS:

two different notions of finite and infinite convergence circle
series of real numbers provide

various convergence theorems
sequences of functions provide

differentiability
integrability

but results are not explicitly power series
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Conclusion

New power series for Coq:
easy to use:
CJn = +∞ : 41 LoC
Jn+1(x) + Jn−1(x) = 2n

x Jn(x) : 35 LoC
x2 · J ′′n (x) + x · J ′n(x) + (x2 − n2) · Jn(x) = 0 : 94 LoC

with a proper notion of convergence circle

Nb. Definitions Nb. Lemmas Nb. Lines
Series 3 47 764
PSeries 13 70 1674

Available at : http://coquelicot.saclay.inria.fr/

19 / 21
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Perspectives

About Power Series:
Composition
Quotient
Automation

About Real Analysis:
Left and right limits
Equivalent functions
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Any questions?

Build a user-friendly library of real analysis in Coq.

http://coquelicot.saclay.inria.fr/

http://coquelicot.saclay.inria.fr/
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Limits’ troubles

Definition Lim_seq (un)n∈N :=
lim (un) + lim (un)

2
∈ R

Lim_seq (−1)n = 0
Lim_fct

x→0
x−1 = +∞

As on paper: can be written,
but no meaning without proof of convergence
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Left and right limits

Actual alternative on left and right limits:

lim
x→0+

x−1 = Lim_fct
x→0

|x |−1 and lim
x→0+

x−1 = Lim_fct
x→0

(− |x |)−1
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