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Motivation 

• Long-term goal: 

– Verified implementation of a security protocol in Coq 

• Results so far: 

– Important pieces of assembly and C code 
• Progress reports in other venues [SAC 2012, PLPV 2013] 

• Recently completed 

• Why this presentation?  

– Much related work in verification of low-level code 

– Not that many examples of concrete pieces of code 

– Significant effort worth reusing 



Concrete Verification Targets 

• Pieces of code typical of security protocols 
– E.g., consider the SSL/TLS protocol: 

• Core = cryptographic schemes 
– Partly implemented in assembly 

» Performance, security counter-measures 
– Mostly modular arithmetic: 

» Modular exponentiation (e.g., all steps of ElGamal) 
» Pseudo-random number generation 

(key generation, probabilistic encryption) 
» Extended GCD algorithm 

(e.g., inverse modulo for private keys of RSA) 

• Communication = exchange of formatted binary packets 
– Parsing/pretty-printing 
– Usually implemented in C 
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Outline 

• Formal verification of arithmetic functions 

– Case study: binary extended GCD 

• Formal verification of binary packet parsing 

– Case study: parsing of initialization packets for TLS 

• Related work and conclusion 



Binary Extended GCD 
Algorithm in Pseudo-code 

• Extended? Given u and v, return u  u1 + v  u2 = g  u3 = GCD(u,v) 

• Knuth’s binary extended GCD  49 lines 

 

• Binary? Multi-precision division  shifts 



• Library of verified arithmetic functions: 
Signed additions, subtraction, halving, doubling, 
etc. (25 functions, 313 l.o.c. of MIPS) 

• Main issue: 
Arbitrary-size integers  Multi-precision integers 
(In other words, quid of overflows?) 

Binary Extended GCD 
From Pseudo-code to Assembly 

Assembly? 

“in many cases the intellectual heart of a 

program lies in the ingenious choice of 

data representation rather than in the 

abstract algorithm” (J.C. Reynolds, 1981) 

• Starting point: 
Signed integers like in the celebrated GMP library 

(69 l.o.c of MIPS) 



Pseudo-code  Assembly 

• Forward simulation: 
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• Compositional reasoning (e.g.): 
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Difficulties: overflows, 
special treatment of zeros 



Pseudo-code  Assembly 
Simulation Proof 

1. Decompose using compositional reasoning 

2. Basic simulations proved using support library 

pseudo- 
code assembly 

Example: One of the five steps of the binary extended gcd 



Binary Extended GCD in Assembly 
Technical Verification Overview 

• Support library 
– Verification of basic functions for signed multi-precision arithmetic 

• Signed additions, substractions, halving, doubling, etc. (25 functions, 313 l.o.c. of MIPS) 

• Prove correctness (7,746 l.o.c. of Coq scripts) 
• Simulation statements (4,753 l.o.c. of Coq scripts) 

• Application to Knuth’s binary extended GCD 
1.  Formal verification of the pseudo-code 

• Loop-invariants about functional correctness 

2.  1,466 l.o.c of systematic Coq scripts (for 69 l.o.c. of MIPS) 

• Invariants about implementation details only (overflows) 

• Details: 
– [On Construction of A Library of Formally Verified Low-level Arithmetic 

Functions, ISSE 9(2): 59-77 (2013)]  
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• Formal verification of binary packet parsing 

– Case study: parsing of initialization packets for TLS 

• Related work and conclusion 



An Intrinsic Encoding of a subset of C 

• Expressions indexed with (type-checking rules for) C types: 

Inductive exp {g } : g.-typ  Type  

| add_e :  t, exp (btyp: t)  exp (btyp: t)  exp (btyp: t) Arithmetic 
addition 

| add_p :  t, exp (:* t)  exp (btyp: sint)  exp (:* t) Pointer  
arithmetic 

%”buf” : exp (:* (btyp: uchar)) [ 1 ]sc : exp (btyp: sint) 

• Usefulness: 

| var_e :  str t,  get str  =  t   exp t  Variable 

| cst_e :  t, t.-phy  exp t  Constant 

same  
Notation “a ¥+ b” := … 
using 
Class/Instance 

%”buf” + %”buf” [ 1 ]sc + [ 1 ]sc 

Arithmetic addition: 

%”buf” + [ 1 ]sc 

Pointer arithmetic: 



Deep embedding of C Types 
• Example of a C structure: 

Valid 
structure: 
No cycle,  
no empty struct, 
no undefined tags 

1. 
2. 
3. 

cell ? 1. 

header first cell  

4 

2. 

cell data header  char head 3. 

4 1 

• Generic terminating type traversal function: 



• C structures are padded to conform to alignment: 

Application to sizeof Computation 

Obtained by instantiating of the generic type traversal: 

header first cell  

cell data header  char head 

4 

4 1 

padding 

3 
addr0 addr1 



Application to Pretty-printing (new) 

• Pretty-printer = instantiation of the generic type traversal:  

• Example: 



Case Study (1/2) 
Parsing of Network Packets for SSL/TLS 
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Case Study (2/2) 
Parsing of Network Packets for SSL/TLS 



ClientHello Parsing (1/2) 
Technical Verification Overview 

• Target function: ssl_parse_client_hello 
– Original C code: 161 l.o.c. (85 w.o. comments and debug info) 
– Coq model: 132 l.o.c. (Patched version!)  

• goto  while 
• Expressions with side-effects  split into commands 

• Formal proof: 
– 4087 l.o.c. ( 30 l.o.c. Coq scripts / l.o.c. of C) 
– Ltac tactics (a la Appel [2006]) 
– Low-level manipulation of bit strings (shifts, concats, etc.) and 

overflow checking occupy much space 

• Benefits of formal verification: 
– Debugging of the original C code: 

• To prevent accesses to allocated but not initialized memory 
• To guarantee conformance to RFC 

– Check for the absence of extensions 

– Restrictions w.r.t. RFC have been made explicit 
• Some features are not implemented (by design?), but which ones? 



ClientHello Parsing (2/2) 
Technical Verification Overview 

• Compilation of ssl_parse_client_hello’s proof: 
–  220 min. (Unix time) 
–  9 GB of RAM 

• Bottleneck: 
– Most time spent checking a nested loop (for cipher search) 

• Where Separation logic assertions are large because of invariants 

• Counter-measures: 
– Hide string constants behind identifiers 
– Careful management of hypotheses 
– Rewrite Program functions by hand 

• lazy rather than compute 

– Ad-hoc lemmas rather than Ltac tactics 
• Trade-off short scripts  compilation/maintenance time 
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Certifying Assembly with Formal Security Proof […] 
Affeldt-Nowak-Yamada 

Assembly Cminor Textbook seplog Idealized machine C 
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Mostly-automated verification of low-level programs […] 
Chlipala (PLDI) 
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High-Level Separation Logic for Low-level Code 
Jensen-Benton-Kennedy (POPL) 

YNot: Dependent Types for Imperative Programs 
Nanevski-Morrisett-Shinnar-Goverau-Birkedal (ICFP) 

Effective Interactive Proofs for Higher-Order Imperative Programs 
Chlipala-Malecha-Morrisett-Shinnar-Wisnesky (ICFP) 

Java/C# 

Charge! 
Bengtson-Jensen-Birkedal (ITP) 

Verifying Object-Oriented Programs  […] 
Jensen-Sieczkowski-Birkedal (ITP) 

[...] Formally Verified Low-level Arithmetic Functions 
Affeldt (ISSE) 

Separation Logic for Small-Step Cminor 
Appel-Blazy (TPHOLs) 

Practical Tactics for Separation Logic 
McCreight (TPHOLs) 
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Formal Verification of C Systems Code 
Tuch (JAR) 
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[…] Arithmetic Functions in Assembly 
Affeldt-Marti (ASIAN) 

[…] TLS Network Packet Processing Written in C 
Affeldt-Marti (PLPV) 

Tactics for Separation Logic 
Appel (draft) 

Formal Verification of the Heap Manager  […] 
Affeldt-Marti-Yonezawa (ICFEM) 

Mind the Gap 
Winwood-Klein-Sewell-Andronick-Cock-Norrish (TPHOLs) 



Conclusion 

• Summary: 
– Formal verification of concrete pieces of low-level 

code 
• Arithmetic functions in assembly 
• Network packet processing in C 

 Our work provides concrete clues about the 
verification of security protocols in Coq 

• Development tarballs online : 
– http://staff.aist.go.jp/reynald.affeldt/coqdev 

• Future work: 
– Enable verification of program mixing assembly and C 


