
Reynald Affeldt1) Kazuhiko Sakaguchi1)2)

1) National Institute of Advanced Industrial Science and Technology, Japan

2) University of Tsukuba

First Building Blocks For
Implementations of Security Protocols

Verified in Coq

Motivation

• Long-term goal:

– Verified implementation of a security protocol in Coq

• Results so far:

– Important pieces of assembly and C code
• Progress reports in other venues [SAC 2012, PLPV 2013]

• Recently completed

• Why this presentation?

– Much related work in verification of low-level code

– Not that many examples of concrete pieces of code

– Significant effort worth reusing

Concrete Verification Targets

• Pieces of code typical of security protocols
– E.g., consider the SSL/TLS protocol:

• Core = cryptographic schemes
– Partly implemented in assembly

» Performance, security counter-measures
– Mostly modular arithmetic:

» Modular exponentiation (e.g., all steps of ElGamal)
» Pseudo-random number generation

(key generation, probabilistic encryption)
» Extended GCD algorithm

(e.g., inverse modulo for private keys of RSA)

• Communication = exchange of formatted binary packets
– Parsing/pretty-printing
– Usually implemented in C

Previous
work

This
talk

Outline

• Formal verification of arithmetic functions

– Case study: binary extended GCD

• Formal verification of binary packet parsing

– Case study: parsing of initialization packets for TLS

• Related work and conclusion

Binary Extended GCD
Algorithm in Pseudo-code

• Extended? Given u and v, return u  u1 + v  u2 = g  u3 = GCD(u,v)

• Knuth’s binary extended GCD  49 lines

• Binary? Multi-precision division  shifts

• Library of verified arithmetic functions:
Signed additions, subtraction, halving, doubling,
etc. (25 functions, 313 l.o.c. of MIPS)

• Main issue:
Arbitrary-size integers  Multi-precision integers
(In other words, quid of overflows?)

Binary Extended GCD
From Pseudo-code to Assembly

Assembly?

“in many cases the intellectual heart of a

program lies in the ingenious choice of

data representation rather than in the

abstract algorithm” (J.C. Reynolds, 1981)

• Starting point:
Signed integers like in the celebrated GMP library

(69 l.o.c of MIPS)

Pseudo-code  Assembly

• Forward simulation:

cp 0P

R

• R for arithmetic (e.g.):

cp
P

R

c'c;p'p;
P

R

c'p'
Q

R
   QcpP

• Compositional reasoning (e.g.):

 s

 s’

 st

 st’


R ,P0

R

x

y

pseudo-
code

Y

ry

rk

memory

registers

assembly

len

ptr

X

rx

p

pseudo-
code

c

assembly

Difficulties: overflows,
special treatment of zeros

Pseudo-code  Assembly
Simulation Proof

1. Decompose using compositional reasoning

2. Basic simulations proved using support library

pseudo-
code assembly

Example: One of the five steps of the binary extended gcd

Binary Extended GCD in Assembly
Technical Verification Overview

• Support library
– Verification of basic functions for signed multi-precision arithmetic

• Signed additions, substractions, halving, doubling, etc. (25 functions, 313 l.o.c. of MIPS)

• Prove correctness (7,746 l.o.c. of Coq scripts)
• Simulation statements (4,753 l.o.c. of Coq scripts)

• Application to Knuth’s binary extended GCD
1. Formal verification of the pseudo-code

• Loop-invariants about functional correctness

2. 1,466 l.o.c of systematic Coq scripts (for 69 l.o.c. of MIPS)

• Invariants about implementation details only (overflows)

• Details:
– [On Construction of A Library of Formally Verified Low-level Arithmetic

Functions, ISSE 9(2): 59-77 (2013)]

Outline

• Formal verification of arithmetic functions

– Case study: binary extended GCD

• Formal verification of binary packet parsing

– Case study: parsing of initialization packets for TLS

• Related work and conclusion

An Intrinsic Encoding of a subset of C

• Expressions indexed with (type-checking rules for) C types:

Inductive exp {g } : g.-typ  Type

| add_e :  t, exp (btyp: t)  exp (btyp: t)  exp (btyp: t) Arithmetic
addition

| add_p :  t, exp (:* t)  exp (btyp: sint)  exp (:* t) Pointer
arithmetic

%”buf” : exp (:* (btyp: uchar)) [1]sc : exp (btyp: sint)

• Usefulness:

| var_e :  str t, get str  =  t   exp t Variable

| cst_e :  t, t.-phy  exp t Constant

same
Notation “a ¥+ b” := …
using
Class/Instance

%”buf” + %”buf” [1]sc + [1]sc

Arithmetic addition:

%”buf” + [1]sc

Pointer arithmetic:

Deep embedding of C Types
• Example of a C structure:

Valid
structure:
No cycle,
no empty struct,
no undefined tags

1.
2.
3.

cell ? 1.

header first cell 

4

2.

cell data header  char head 3.

4 1

• Generic terminating type traversal function:

• C structures are padded to conform to alignment:

Application to sizeof Computation

Obtained by instantiating of the generic type traversal:

header first cell 

cell data header  char head

4

4 1

padding

3
addr0 addr1

Application to Pretty-printing (new)

• Pretty-printer = instantiation of the generic type traversal:

• Example:

Case Study (1/2)
Parsing of Network Packets for SSL/TLS

Retrofitting

PolarSSL
(polarssl.org)

Coq
model

Pretty-printing

Concrete
C Syntax

RFC
5246

PolarSSL

(polarssl.org)
Coq

model

Concrete
C Syntax

Pretty-
printing

Retro-
-fitting

Coq
model

Essentially defines the format of binary packets (e.g.):

Separation
logic

Case Study (2/2)
Parsing of Network Packets for SSL/TLS

ClientHello Parsing (1/2)
Technical Verification Overview

• Target function: ssl_parse_client_hello
– Original C code: 161 l.o.c. (85 w.o. comments and debug info)
– Coq model: 132 l.o.c. (Patched version!)

• goto  while
• Expressions with side-effects  split into commands

• Formal proof:
– 4087 l.o.c. ( 30 l.o.c. Coq scripts / l.o.c. of C)
– Ltac tactics (a la Appel [2006])
– Low-level manipulation of bit strings (shifts, concats, etc.) and

overflow checking occupy much space

• Benefits of formal verification:
– Debugging of the original C code:

• To prevent accesses to allocated but not initialized memory
• To guarantee conformance to RFC

– Check for the absence of extensions

– Restrictions w.r.t. RFC have been made explicit
• Some features are not implemented (by design?), but which ones?

ClientHello Parsing (2/2)
Technical Verification Overview

• Compilation of ssl_parse_client_hello’s proof:
–  220 min. (Unix time)
–  9 GB of RAM

• Bottleneck:
– Most time spent checking a nested loop (for cipher search)

• Where Separation logic assertions are large because of invariants

• Counter-measures:
– Hide string constants behind identifiers
– Careful management of hypotheses
– Rewrite Program functions by hand

• lazy rather than compute

– Ad-hoc lemmas rather than Ltac tactics
• Trade-off short scripts  compilation/maintenance time

Outline

• Formal verification of arithmetic functions

– Case study: binary extended GCD

• Formal verification of binary packet parsing

– Case study: parsing of initialization packets for TLS

• Related work and conclusion

Certifying Assembly with Formal Security Proof […]
Affeldt-Nowak-Yamada

Assembly Cminor Textbook seplog Idealized machine C
2

0
1

2

2
0

1
1

2

0
0

6

2
0

0
8

Mostly-automated verification of low-level programs […]
Chlipala (PLDI)

2
0

0
9

2

0
1

3

High-Level Separation Logic for Low-level Code
Jensen-Benton-Kennedy (POPL)

YNot: Dependent Types for Imperative Programs
Nanevski-Morrisett-Shinnar-Goverau-Birkedal (ICFP)

Effective Interactive Proofs for Higher-Order Imperative Programs
Chlipala-Malecha-Morrisett-Shinnar-Wisnesky (ICFP)

Java/C#

Charge!
Bengtson-Jensen-Birkedal (ITP)

Verifying Object-Oriented Programs […]
Jensen-Sieczkowski-Birkedal (ITP)

[...] Formally Verified Low-level Arithmetic Functions
Affeldt (ISSE)

Separation Logic for Small-Step Cminor
Appel-Blazy (TPHOLs)

Practical Tactics for Separation Logic
McCreight (TPHOLs)

2
0

0
7

Formal Verification of C Systems Code
Tuch (JAR)

2
0

1
0

[…] Arithmetic Functions in Assembly
Affeldt-Marti (ASIAN)

[…] TLS Network Packet Processing Written in C
Affeldt-Marti (PLPV)

Tactics for Separation Logic
Appel (draft)

Formal Verification of the Heap Manager […]
Affeldt-Marti-Yonezawa (ICFEM)

Mind the Gap
Winwood-Klein-Sewell-Andronick-Cock-Norrish (TPHOLs)

Conclusion

• Summary:
– Formal verification of concrete pieces of low-level

code
• Arithmetic functions in assembly
• Network packet processing in C

 Our work provides concrete clues about the
verification of security protocols in Coq

• Development tarballs online :
– http://staff.aist.go.jp/reynald.affeldt/coqdev

• Future work:
– Enable verification of program mixing assembly and C

