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Preface

This first edition of the Coq workshop aimed at gathering the community of Coq users
and developers around refereed contributed talks (to be later on re-submitted for pub-
lication to the Journal of Formalized Reasoning) and discussions on Coq. The Pro-
gramme Committee consisted of:

Yves Bertot

Frédéric Blanqui
Jacek Chrzaszcz
Eduardo Giménez
Georges Gonthier
Hugo Herbelin (chair)
Greg Morrisett

David Nowak
Benjamin Pierce

Advertised on the Coq Club and TYPES mailing lists, the workshop attracted seven
submissions which were given to three members to review, and in a few cases additional
reviews were solicited. The papers were discussed by e-mail within a 10-days period
and the Program Committee selected six papers for presentation and pre-publication
in these proceedings. In addition, the programme of the workshop included an invited
talk, by Georges Gonthier (joint invited speaker with the ACM SIGSAM 2009 Interna-
tional Workshop on Programming Languages for Mechanized Mathematics Systems —
PLMMS 2009).

I would like to thank all the authors who submitted a paper, and the Program Com-
mittee and external reviewers for the quality of their reports and for their feedback to
the authors. I would like to thank the Technical University of Munich, the organisation
committee of TPHOLSs, especially Makarius Wenzel, Stefan Berghofer and Christian
Urban, who helped us in making the actual workshop go well and in providing support
for publishing these proceedings.

Through the Coq Technological Development Action, INRIA supported the work-
shop.
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Sets in Coq, Coq in Sets
Bruno Barras

INRIA Saclay - Ile de France

The title of this article refers to Werner’s “Set in Types, Types in Sets” [13]. Our initial goal
was to build formally a model of the Calculus of Inductive Constructions (CIC), the formalism
of Coq. In [3], we formalized the syntactic metatheory of CIC and type-checking algorithms,
under the assumption that our presentation enjoys the strong normalization property, which is
the non-elementary step in proving the consistency of CIC.

The present work can be viewed as a first step towards the formalization of the semantics
of CIC, concluding to strong normalization and consistency. Of course, due to Godel’s second
incompleteness theorem, this can be fulfilled only under some assumptions that strengthen
Coq’s theory (unless the formalism is inconsistent). This approach is similar to Harrison’s work
about verifying HOL Light [8].

It is well-known that the Calculus of Constructions (CC, [4]) admits a finite model that
is both classical and proof-irrelevant. The only requirement on such a model is to include
booleans and to be closed by arrow type (non-dependent product). No infinite set is involved
so we should be able to build a model of CC in the theory of hereditarily finite sets. However
simple this description may seem, actually building a model for the common presentation of
CC reveals technical traps as illustrated in [10]. The focus will be on the product fragment and
on universes of CIC. A complete formalization of inductive types requires a lot of work. To
show that our model construction can cope with inductive types, we have built a simple, yet
recursive, inductive type: Peano’s natural numbers. We have adopted a systematic approach
and departed from the usual representation of natural numbers (ordinal w).

The formal definitions of this article! can be organized in three categories: (1) developing
a Coq library of common set theoretical notions and facts about pairs, functions, ordinals,
transfinite recursion, Grothendieck universes, etc. (the Sets in Coq side), (2) building specific
ingredients for models of typed A-calculi, and (3) building set theoretical models of those theories
within Coq (both fall into the Coq in Sets side).

1 Hereditarily finite sets

This is the V,, set: the set obtained by applying w times the powerset operation on the empty
set. All the basic operations are decidable, so there is no distinction between intuitionistic and
classical variants. The type of hereditarily finite sets can be defined as the type of well-founded,
finitely branching trees:

Inductive hf : Set := HF (elts : list hf).

Of course, here we use lists for commodity, but order and repetition of elements in the list
is not relevant. We thus need to express the equality as a setoid, in order to have rewriting

'See http://www.lix.polytechnique.fr/Labo/Bruno.Barras/proofs/sets/.



reasoning on sets. We will use the let (x1) := x in ... idiom (destructuring let) to get the
list of subsets.

Equality and membership These two notions are mutually recursive: two set are equal if
they contain the same elements, and a set is a member of another set if the latter contains an
element that is equal to the former. This informal definition cannot be used as-is in Coq because
of the strict syntactic guard condition that ensures that recursive definitions are well founded.
One solution is to inline the membership definition in the equality. We first define universal and
existential quantifiers on the members of a set. Note that they apply only structurally smaller
sets to the predicate.

let (x1)
let (x1)

x in List.forallb P x1.
x in List.existsb P x1.

Definition forall_elt (P:hf->bool) x :
Definition exists_elt (P:hf->bool) x :
Fixpoint eq_hf x y {struct x} : bool :
forall_elt(fun x’ => exists_elt(fun y’ => eq_hf x’ y’) y) x &&
forall_elt(fun y’ => exists_elt(fun x’ => eq_hf x’ y’) x) y.
Definition in_hf x y := exists_elt (fun y’ => eq_hf x y’) y.

We then show the basic facts that eq_hf (noted ==) is an equivalence relation and that
membership (noted as usual €) is a morphism for our equality:

r==2a A y::y’ Nr ey = x'Ey/.

Finite Zermelo-Fraenkel The various operations of HF can be implemented easily:

Definition empty := HF nil.
Definition pair x y := HF(x::y::nil).
Definition union x :=

HF (fold_set(fun y 1 => let (yl):=y in yl++1) x nil).
Definition subset x (P:hf->bool) :=

HF (fold_set(fun y 1 => if P y then y::1 else 1) x nil).
Definition power x :=

HF (fold_set (fun y pow p => pow p ++ pow (y::p)) X

(fun p => HF (rev p) :: nil) nil).
Definition repl x (f:hf->hf) := let (x1) := x in HF(map f x1).

Let us recall that |Jz is the union of the all the elements of =, so a Ub is encoded as | J{a;b}.
subset a P denotes {x € a | P(z)} where P is decidable. The powerset Pz (power z) is the
set of all subsets of .2 The last operation is the replacement: repl a f stands for the informal
notation {f(z) | € a}, where f is a function of the meta-logic (Coq), so we can actually
compute with sets. Iterator fold_set has type VX, (hf - X — X) —» hf —» X — X and is
defined by fold_set f {z1;...;2n} a = fz1(...(fxna)...) taking care to cancel repetition of
elements. This requirement will be used when defining the dependent product of two sets. A
slightly more readable notation for fold_set fza is foldye, (X — f(y, X)) a.

At this point we can prove that those operators give a model of the Intuitionistic Zermelo-
Fraenkel set theory (without the infinite set obviously). The eager reader can have a look at
figure 1 for the precise statement of the “axioms” of the theory. From now on, we will not have
to consider the actual representation of sets anymore.

2The rev is only for cosmetic reasons, so the elements of the subsets are displayed in the same order as the
original set.



Ordered pairs and functions We follow the common usage to encode the ordered pair
(couple a b) written (a,b) as {{a}; {a;b}}. Function f is coded as the set of couples (z, f(z))
where x ranges a given domain set. Typing of functions lead to introduce dep_func A B for
B : hf — hf, the set of dependent functions from (z € A) to B(x), that is II,c4B(x). The
formalization is quite standard, so we simply list the definitions and main facts:

tstp = U{zeUp|{z}€p}

sndp = U{yeUp|{fstpy} € p}
lama f = {(z, f(z)) |z € a}
appab = snd|J{p€al|fstp==1>}
dep_func A B := foldyea(X — {{(z,9)}Uf | f€ X, ye B(x)}) {0}

U(a,b) = {a; b} fst(a,b) =a snd (a,b) = b
r€a = app(lamaf)z = f(z)
(Vx €a,f(zr) € B(x)) = lamAf € dep_funcAB
f€dep_funcAB AN € A = appfx € B(x)
f€dep_funcAB = f==1lamA(\z.appfzx)

The fact that fold_set f x a does not apply the same element of x twice to f is crucial so that
we actually build functional relations.

2 Intuitionistic Zermelo-Fraenkel

In this section, we will not proceed as for HF. Our primary goal is to use Coq as a prover for
IZF, rather than comparing the theoretical strengths of Coq and IZF. This is why we will first
proceed by defining a module interface that gathers the basic operations and axioms of IZF,
and build a library of set theoretical constructions together with their properties. To make
complex constructions easier, we have chosen a Skolemized presentation. Then, we will try to
instantiate the signature. Such attempt to give a model of set theory within Coq has already
been formalized by Werner.? Here, we recoded this work, and pushed further the study of
universes.

2.1 IZF Axiomatization

We assume we have a type set:Type equipped with two relations == and € such that set
equality is extensional and membership is a morphism:

a==b < Vr.x€a < z€b and a==d Naeb=4d €b.

Next, sets can be constructed using the following constants: the empty and infinity sets, a
binary operation pair:set->set->set, two unary operators union and power, and the replace-
ment operator repl:set — (set — set — Prop) — set. They should satisfy the so-called
“axioms of ZF” listed in figure 1. Replacement is obviously the one that calls the most for
explanations. The introduction of a variable 3 equals to y is to deal with cases where R is not
a morphism.* The side condition (R is functional) does not require R to be total (unlike in
HF). So, repl a R is the image of a by R, discarding those that are not in the domain of R.
This allows to derive the comprehension scheme from replacement.

3This formalization is available as the Rocq/ZFC user contribution of Coq.

4 Assuming we have two extensionally equal sets y and 3’ but intentionally distinct (y == y’ A =y = ¢'), then
we could show that y belongs to repl {#} (A_z. 2 = y), but ¥’ would not, in contradiction with the fact that € is
a morphism.



T € empty = L
Tz €pairab +— zxz==a V z==
T €uniona <= dJy€ax€y
r €Epowera < Yye€zxzyca
y€replaR <= 3Jreay.y==y NR(z,y)

(ifVea'yy. 2 €a ARz, y) NR(Z, YY) Ao ==a' —y==1)
x € infinite <= x ==-empty V Jy € infinite.z ==y U {y}

Figure 1: Axioms of Zermelo Fraenkel

Another important remark about replacement is that the relation is a Prop-valued relation,
as opposed to a first-order formula. This might strengthen the theory, since we can quantify
over proper classes, thanks to the impredicativity of Prop.

2.2 A library of IZF constructions
We are now ready to formalize basic constructions such as pairs, relations and functions mostly

in the same way as in HF, so we will resume the formalization at this point.

Disjoint sums The construction of a model for inductive types requires a notion of disjoint
sum, in order to ensure that constructors build distinct elements. The definitions and expected
properties about typing and elimination are the following;:

inla = (0.a) inla ==inld = a==d
incbh (1’b) inrb ==inrd = b==1V
’ inlg == inrd = L
sumAB = {(0,a)|ac A} U{(1,b) |be B}
a€A = inlac€sumAB
be B = inrbesumAB
pEsumAB = (Ja€ A, p==inla) V (3b€ B,p == inrb)
ACA" A BCB = sumABCsumA' B’

Ordinals and fixpoints The classical definition of ordinals as hereditarily transitive sets and
the successor of x as 27 = x U {z} raises problems in an intuitionistic setting. As remarked
by Grayson, y < x is equivalent to y = x V y < z, but not to y C x unless we are classical.
Taylor [12] introduced the notion of plump ordinals, which fixes that issue. Informally, a set x
is a plump ordinal if (1) every element of z is an ordinal, and (2) for all ordinal z such that
z C y € x for some y, then z € z. Since the term ordinal occurs negatively in condition (2),
we define ordinals in two steps. Firstly, plump u x stands for x is a plump ordinal included in
a well-founded set w; this is defined by well-founded induction on u. Secondly, we defined the
class is0rd of well-founded sets that are plump ordinals bounded by themselves:

plumpux = (Vy€u,yc€x=plumpyy) A (Vzy.y EuAplumpy 2AzCyEx =2 € x)
isOrd x := Acc (€) z Aplump x z

The plump successor of z is then the set of plump ordinals included in z. So, z* = {y € Pz |
is0Ord y}. To illustrate the difference, let us consider the ordinal 2: the classical successor of 1
is {0; {0}}, which is a boolean algebra. This contrasts with the plump successor of 1, which is
the set of all {() | P} for some proposition P. This forms a Heyting algebra.



We can define a transfinite operator TR. Intuitionistically, we cannot distinguish zero, suc-
cessor and limit cases, so TR is parameterized by a step function F : (set — set) — set — set
and the ordinal on which we iterate. Formally, TR is defined by replacement using the following
relation (defined impredicatively):

TR_rel oy :=VP.(Vfa.(Vb € a.P 3 f(3)) = P a F(f,a)) = P oy,

which is functional on the class of ordinals. This shows clearly the role of F': it produces the
intended value for a, given (1) a function collecting all intended values for ordinals 5 < a and
(2) « itself.

We define a specialized version of TR for the common cases where the limit case corresponds
to the union of the previous results: given F : set — set,

TI F o:=TR (\fo. | J{F(f(8)) | B € a}) o

The main property of TI is that

TIFa==|J{F(TIFB)[B<a}

This iterator has several interesting properties when F' is monotone w.r.t. set inclusion
(Vzxy.x C y = F(x) C F(y)): it forms an increasing sequence of sets all included in any
pre-fixpoint of F.

aCB=TIFaCTIF3 TIFat'==F(TIFa) Fl@)Caz=TIFaCux

Grothendieck universes The collection Grothendieck universes grot_univ is the collection
of transitive sets U that are closed under all ZF operators: pairing, powerset, union and re-
placement (without assuming it contains the empty set or an infinite set). They have been
introduced to avoid resorting to proper classes, which can be replaced by subsets of a universe.
A set U is a Grothendieck universe if it satisfies the following closure conditions:

yex NxelU = yeU
zxeU NyelU = {xy}teU
relU = PzxelU
IeU AN (VxeUVy.R(z,y) = yelU) = Uy|Frel. R(z,y)}eU
(R functional)

It is straightforward to derive that Grothendieck universes are closed under dependent product,
this is the reason why they play an important role in the interpretation of the Type hierarchy
of CC,, and CIC.

Grothendieck universes are stable by non-empty intersection, so we can define a functional
relation between a universe U and the least universe that contain U, called the successor of U:

grot_succzy :=grot_univy Az € y A (YU.grot_univU Az € U = y CU)

Obviously, the successor universe cannot be built without an extra assumption. The Tarski-
Grothendieck set theory (the formalism of Mizar) is ZF where we assume that for any set, there
exists a universe that contains it. Clearly, in this theory, the replacement axiom lets us build
an infinite sequence of nested universes.



2.3 An attempt to build a model of IZF

Model of IZF Following Peter Aczel’s work [1], (well-founded) sets can be encoded in a
tree-like datatype:

Inductive set : Type := sup (X:Type) (f:X->set).
Definition idx (x:set) : Type := let (X,f) := x in X.
Definition elts (x:set) : idx x -> set := let (X,f) := x in f.

Type X is used to index the direct elements of a set, and elts = 7 is the element of x with
index 4. The predicativity of inductive types in sort Type implies that the sort of X is lower
than that of set so it is not possible to form the set of all sets by sup set (fun x=>x).

Most of constructions can be implemented straightforwardly: pair {z;y} can be coded by
(sup bool (fun b => if b then x else y)); union of z is a set indexed by a dependent
pair formed of an index ¢ of x, and an index of the element of x with index i; powerset of x is
a set indexed by predicates over indexes of x, yielding the subset of x which index satisfy the
predicate.

We remark that we can define a weaker version of replacement where the relation can be
expressed as a function at the meta-level:

replf:set->(set->set)->set xereplfaf < dycax==fy

The set replf a f is indexed by the index set of a, and the element access function is just
the composition of f with the access function of a. We remark that all the definitions of the
previous paragraphs can be carried out with functional replacement, with the notable exception
of ordinals.

The relational replacement is more delicate. Werner resorted to a type theoretical axiom of
choice:®

Axiom choice : forall (A B:Type) (R:A->B->Prop),
(forall x:A, exists y:B, R x y) -> exists f:A->B, forall x:A, R x (f x).

This axiom can transform any relation between sets into an existentially quantified function,
than we can feed to replf. Thus, we can derive the existential version of replacement:

Va R.R functional = 3z,Vy,y € z <= Tz € a,I ,y ==y A R(z,y')

We slightly refined Werner’s result by not requiring the excluded-middle to prove this.

In order to faithfully instantiate our IZF axiomatization, we need to Skolemize the replace-
ment axiom. We have built a functor that, given a model of IZF where constructors are exis-
tentially quantified, produces a model of IZF as in section 2.1. Sets of the skolemized signature
are predicates over sets of the input signature, that are satisfied by exactly one set.

Universes We are now trying to build a Grothendieck universe. For this we are considering
that the set of the previous paragraph represents “small sets” and we are going to duplicate
this set definition so that we can build a “big set” of all “small sets”. We relate both types of
sets by defining the copy of any small set at the big set level (which enforces that small sets live
in a universe level less than or equal to that of big sets), and finally a big set U that contains
a copy of every small set. This latter definition enforces that small sets live in a universe level
strictly below that of big sets. The following definition already reflects this constraint.

5This axiom, called Type Theoretical Description Axiom by Werner, is weaker than the set theoretical axiom
of choice since it does not imply the law of excluded-middle.



Inductive bigset : Type := bigsup (X:Type) (f:X->bigset).
Fixpoint copy (x:set) : bigset :=

match x with

| sup X £ => bigsup X (fun i => copy (f 1))

end.
Definition U : bigset := bigsup set copy.

Equality and membership of small sets and their copies coincide. The next step would be to
prove that U is a Grothendieck universe. Transitivity of U, closure of U under pair, union and
powerset are straightforward. The relational replacement (repl) is also an internal operation
of U.

One might expect that we can avoid needing the choice axiom by working in 1Z + replf.
Such a theory looks appealing since dependent products and A-abstractions can be expressed
easily. Unfortunately, we failed to prove that Grothendieck universes are closed under functional
replacement: given a function that produces big sets and the logical assumption that those
big sets are indeed in U, we cannot derive a function producing small sets, which would, by
replacement at the small set level, witness that the big set built by replacement indeed belongs
to U. Quite ironically, choice seems to be the only way to fix this issue.

2.4 Related Work

There already exists several formalizations of set theory in Coq. We already mentioned Werner’s
work [13]. The focus of this work is to study relationships between set theoretical and type
theoretical formalisms. A fragment of plump ordinal theory is also formalized there.

Another related work is Simpson’s user contribution Sophia-Antipolis/FunctionsInZFC which
features an axiomatization of ZFC, and develops classical set theoretical notions.

Our present work takes from both above cited works, since it reconciles foundational inves-
tigations (like Werner’s work), and a toolbox to mechanically verify proofs in set theory (like
Simpson’s work and subsequent formalizations in algebraic geometry). The contribution of this
paper is, on the one hand, to study a bit further the encoding of Grothendieck universes (and
inaccessible cardinals) in the sets-as-trees paradigm, and on the other hand, to develop as much
as possible an intuitionistic set theoretical toolbox usable at a large scale.

3 Set theoretical model of the Calculus of Constructions

This section illustrates how these formalizations can be used to build set theoretical models of
the Calculus of Constructions.

3.1 An abstract model of CC

We define an abstract model of the Calculus of Constructions: a structure (X, ==, €, @, A,
I1, %), with == an equivalence relation, €: X — X — Prop, @: X — X — X, and A,II of type
X — (X - X) — X, all should be morphisms. Finally, % : X will be the set of the propositions
of CC. Such a structure is a model of the Calculus of Constructions if it satisfies the properties
of figure 2.

3.2 Building the model in HF

In this section, we show that we can build such a model in HF. The first three conditions of an
abstract model would suggest we can have @=app, A=1am and [I=dep_func, but the last one



(Vz € A, f(z) € B(z)) = A(A,f) €TI(A, B) (II-1)

xell(A,B) N ye A = Q(x,y) € B(y) (TII-E)
r€A = QA f),2)==f(z) (B)

(Ve € A,B(x) € x) = TI(A,B) € (Imp)

Figure 2: Abstract model of the Calculus of Constructions

(impredicativity) cannot be satisfied. To turn around this, we use Peter Aczel’s encoding of
functions [1], that consists of encoding a function f by the set of pairs (x,y) such that y belongs
(rather than being equal) to f(z). Application is adapted so as to collect all the ys such that
(z,y) belongs to the function. This way, the empty set is the function that maps any set to the
empty set. Propositions are then either () or {0}, hence the classical and proof-irrelevant nature
of this model.

cc_.lamAf = {(z,y) |z € A ye f(x)}
cc_appry := image{p € x| fstp ==y}
cc_prodAB := {cc_lam A (Az.app fz) | f € dep_func A B}
props = P{0}

3.3 Building the model in I1ZF

The abstract model of the Calculus of Constructions can also be instantiated in IZF, using the
same definitions as in the previous paragraph. However, in IZF, the same definitions have a
totally different meaning. Propositions are not mere booleans, but form a Heyting algebra,
reflecting the meta-level propositions up to equivalence.

x € props < x € P{0} < x={0| P} for some proposition P

Thus, the model is proof-irrelevant, but not classical.

3.4 Soundness of the abstract model

Here we are going to prove that the abstract model described previously allows to actually build
an interpretation of terms and judgements of the Calculus of Constructions that will validate
the typing rules of CC. The construction is independent of the way we choose to instantiate the
abstract model (either using HF or IZF).

Our approach is to delay the introduction of the syntax as much as possible, so that our
model is “open” in the sense that we can check the validity of new constructions or typing rules
in a modular way. We will introduce the usual syntax of terms and typing rules only at the end
of this section. It is then trivial to translate the syntax into the semantics.

Instead of defining the interpretation function by recursion on the syntax of terms, we
represent terms as their interpretation function, that is a function that maps any valuation
(assigning a set to every variable) to a set.

Valuations and associated operations (dummy valuation, extension and shift) are defined as:

Definition val := nat -> X.
Definition vnil : val := fun _ => props.
Definition vcons (x:X) (i:val) : val :=

fun k => match k with 0 => x | S n => i n end.

Definition vshift (n:nat) (i:val) : val := fun k => i (n+k).



Terms Let us remark that our abstract model gives a way to interpret all kinds (it contains
Prop and is closed by product), but it does not contain a set to interpret the sort Kind, which
is not a finite type. So we use the option type to represent terms as either Kind or a function
from valuations to sets. Since we want our interpretation to be a morphism, we get the following
definition for terms:

Definition term := option {f:val->X|Morphism (eq_val ==> eqX) f}.

Terms are viewed either as objects (and they are encoded by an element of X'), or as a
type (a set of elements of X'). The following two definitions reflect that remark (int gives
the object level interpretation, and el the type level interpretation). Observe how el encodes
that the denotation of Kind is the whole model X. The object level interpretation of Kind is a
dummy value since this sort (like any top sort of a PTS) can never appear in subject position
in judgements.

int : term — val — X el : term — val — X — Prop
int (f,) i = fi el (f,o)ixz == zefi
int None ¢ := props el None 7 x := True

We can define the usual term constructors (using de Bruijn notations for variables). We
leave out the proof that they are morphisms, which is straightforward.

prop := (A_.props, -) kind := None Ref n:= (Ai.in, _)

Appuv = (Ai.app (int w i) (int v i), _)
Abs A M := (Xi.lam (int A i) (Az.int M (vcons x 7)), -)
Prod A B := (Ai.prod (int A ¢) (Az.int B (vcons z 1)), _)

Although we do not have introduced the syntax yet, lifting of de Bruijn variables and
substitution can be expressed as operations on the valuation:

1lift : N — term — term subst : term — term — term
lift n (f,.) := (M. f(vshiftni), _) subst a (f,-) = (M. f(vcons (intai) i), _)
1ift n None := None subst a None := None

Environments As usual in a de Bruijn setting, environments are lists of types, and they are
deemed to denote valuations that map each variable to a value in the denotation of the type
associated to this variable.

Definition env := list term.
Definition val_ok (e:env) (i:val) := forall n T,
nth_error e n = value T -> el (1lift (S n) T) i (i n).

Note that this is slightly more permissive than the typing rules, which generally rule out kind
variables (when 7' = Kind).

Judgements We consider two semantic judgements, that intuitively correspond to equality
and membership in the model:

e eq_typ which corresponds to convertibility. We will discuss later on why this judgement
depends on the environment.

e typ which expresses typing.

Definition eq_typ (e:env) (M M’:term) :=
forall i, val_ok e 1 -> int M i == int M’ 1i.
Definition typ (e:env) (M T:term) :=
forall i, val_ ok e i -=> el T i (int M i).



Soundness of the model The goal now is to prove that our model is sound, which means
that eq_typ admits all the rules of 3-conversion (congruent equivalence relation including -
reduction). If we try to prove the admissibility of S-reduction in general, we fail because in a
set theoretical model, functions do not behave like a A-term outside their intended domain. So
the property holds only for well-typed terms (condition eq_typ e N T below), which requires
keeping track of the environment in equality judgements:

Lemma eq_typ_beta : forall e TM M’ N N’,
T <> kind > typeNT —>
eq_typ (T::e) M M’ -> eq_typ e N N’ —>
eq_typ e (App (Abs T M) N) (subst N’ M’).

This also explains why it is not as easy as expected (see [10]) to build set theoretical models of
type systems which consider type convertibility as an untyped relation.

We can now prove that the semantic typing judgement admits all the rules of CC. Finally, by
remarking that the denotation of VP. P is the intersection of all proposition, and using the way
we instantiated props, we can show that it is empty. This proves the logical consistency of CC.
The model does not make use of ordinals or universes, so our consistency proof is axiom-free.

Syntax At this point, we may want to check that some given set of inference rules form
a consistent theory. To do so, we just have to write a recursive function that maps syntactic
terms to semantic terms (using the term constructors defined previously), prove that syntactical
lifting and substitution is equivalent to the semantic operations. A final induction allows to
prove that the typing judgements of CC (presented with a judgemental equality) imply the
semantic judgements.

As a final remark, we obtain models of the common presentation of CC (with untyped
equality) by showing the equivalence between both presentations. Adams [2] has proved this in
the case of functional PTSs. We have formalised this proof, that we will not detail here.

Conclusions Several models of the Calculus of Constructions can be found in the literature
[5, 10, 11]. We claim that this model is simpler in several respects:

e the definition of the interpretation function is straightforward and does not rely on
excluded-middle, thanks to Aczel’s trick.

e it does not consider a stratification of terms (as proof-terms, types and kinds), which do
not generalize to universes.

e it admits extensions at the Kind level by any type whose denotation is a set constructible
in IZF, since the denotation of Kind is the class of all IZF sets.

Building the model for system in judgemental equality presentation makes the soundness proof
much easier. The technical difficulties (either resorting to a stratification of terms [5], or intro-
ducing some dynamic type-checking in the (-reduction [10]) are restrained to the equivalence
proof with the untyped equality presentation.

This model also supports not so trivial extensions like PropCKind, but we shall remark that
Adams’ proof does not apply anymore since we have lost type uniqueness. So, the justification
of such extension in a presentation of the calculus with untyped conversion remains open, to
our knowledge.
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4 Model of the Calculus of Constructions with Universes (CC,)

An abstract model of the Calculus of Constructions with universes (CC,) is an abstract model
of CC, extended with a sequence (u;);en that satisfies the following properties:

* € U Up € Up+1 Up C Upt1
Acu, N Yz e A, B(z) €u,) = II(A,B) € uy,
Aex N VYre A, B(z) €uy) = II(A,B) € uy,

CC,, can be proven consistent in ZF [9]. But if we want a model that can cope with
inductive types, there is little hope that we can escape without resorting to an infinite number
of inaccessible cardinals, as shown in [13]. We found it easier to reason with Grothendieck
universes, which directly gives us a set that is closed under all ZF set constructors, and thus
closed under dependent products and inductive types. It is straightforward to prove that if we
assume the existence of an infinite sequence of Grothendieck universes, the abstract model of
CC,, signature can be instantiated.

The model construction follows the same steps as for CC, with the difference that CC,, has
no top sort, so our interpretation domain is directly the type X.

If we do not consider cumulativity (inclusion of Type; in Type;+1), type uniqueness holds and
so does the equivalence between untyped conversion and judgemental equality, and our model
construction applies to the presentation with untyped conversion. However, adding cumulativity
breaks type uniqueness and if we cannot generalize Adams’ result, we will have to find another
equivalence proof. Normalization by evaluation techniques might help here.

5 A Model of Natural Numbers based on Size Annotation

In this section we show that a simple inductive type (Peano’s natural numbers) can fit into our
model construction. We are going to follow a very general scheme so that the method generalizes
to arbitrary inductive types. Inductive types are traditionally thought of as the least fixpoint
of a (monotonic) type transformer.

Given the inductive structure of nat, we consider the type transformer NATf X := sum UNIT X
(where UNIT is {0}). Constructor ZERQ is inl zero and SUCC z is inr x. We can show that
ZERO belongs to NATf X for any X, and if n belongs to X, then SUCC n belongs to NATf X.

The type of natural numbers with size annotations Termination of functions defined
by structural recursion is ensured by type-checking [7], unlike the implementation of Coq which
distinguishes the pattern-matching operator from the fixpoint operator, and uses a syntactic
criterion to check that recursive calls are made only on structurally smaller terms as described
in [6]. In [3], we proposed a variant of [7] where inductive types are annotated by size annota-
tions. Such annotation is intended to denote an ordinal over which we iterate the constructor
operator.

Using TI, we define NATi the transfinite iteration of NATE, i.e. it is the function o — NAT£%(())
for any ordinal o.. At this point we do not use the fact that NATi w is a fixpoint of NATE.

Let us assume that P is a morphism and « an ordinal. Pattern-matching on a natural
number n of size bounded by « leads to either n == ZERQ, or n == SUCC m for some m of size
0 < a:

P(ZERO) A (VB < a.¥Vm € NATi 8.P(SUCCm)) = Vn € NATi«a.P(n)

Replacement can be used to turn this specification into a set that is the denotation of a pattern-
matching constant. Constructor discrimination and injection is needed to show that the output
of pattern-matching (constructor case and arguments) is uniquely specified.
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The fixpoint associated to natural numbers of size bounded by « can be expressed without
any reference to the constructors:

(VB < a.(Vy < f.¥Ym € NATi~y.P(m)) = (Vn € NATi 5.P(n))) = Vn € NATi a.P(n)

If we omit the ordinal annotations, this specification looks like a fixpoint operator of type
((nat — P) — (nat — P) — nat — P. Of course, ordinals are the guarantee that recursion
terminates. The subtle relation between three sizes

e « the size of initial call to the recursive function,
e 3(< «) the typical size of the input along the recursive calls
e and v(< ) the maximum size on which recursive calls are allowed
is a (yet somewhat informal) justification of the typing rules of fixpoints based on size annota-

tion, as in [3].

Building the fixpoint We define NAT as NATiw. In order to show that NAT is a fixpoint of
NATf, we prove that sum is continuous: for any I (X;);cr and (Y;)ier,

sum | fX;|iel} | J{Viliel} == {sum X, Yi| i€ I}

So, NATf NAT == [J{NATf (NATi n") | n < w} == |[J{NATi n™" | n < w} == NAT. From this
fixpoint equation, it is straightforward to derive the usual eliminator on natural numbers:

P(ZERO) A (Vm € NAT.P(SUCCm)) = Vn € NAT.P(n)

6 Conclusion and Future work

This article shows that formal semantics of expressive type theories are not out of reach anymore.
We claim this, although there is a gap between informal and formal semantics that is often
overlooked by authors.

This work can be followed in several directions:

e formalizing general inductive types: this requires more support for transfinite recursion
and a characterization of the ordinal that makes all positive inductive definitions reach
their fixpoint. Such an ordinal can be related to the cardinal of the universe in which
the inductive definition lives in. Since a large piece of cardinal theory rely on the (set
theoretical) axiom of choice, we might have to axiomatize ZFC.

e studying other models: set theoretical models are good to give an explanation of CIC that
is compatible with the intuition of mathematicians; however in a programming language
setting, models based on Scott domains are more pertinent; also, it would be interesting
to look at how our models (designed initially to prove consistency) can be turned into
strong normalization models.
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Abstract

We present a Coq reflexive tactic for deciding equalities or inequalities in Kleene algebras.
This tactic is part of a larger project, whose aim is to provide tools for reasoning about binary
relations in Coq: binary relations form a Kleene algebra, where the star operation is the
reflexive transitive closure. Our tactic relies on an initiality theorem, whose proof goes by
replaying finite automata algorithms in an algebraic way, using matrices.

Motivations

Proof assistants like Coq make it possible to leave technical or administrative details to the
computer, by defining high-level tactics. For example, one can define tactics in order to solve
decidable problems automatically (e.g., omega for Presburger arithmetic and ring for ring equal-
ities). Here we present a tactic for solving equations and inequalities in Kleene algebras. This
corresponds to a broader goal: providing tools (tactics) for working with binary relations. In-
deed, Kleene algebras correspond to a non-trivial decidable fragment of binary relations. In the
long term, we plan to use these tools for formalising process algebras and concurrency theory
results: binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract rewriting
(e.g., Newman’s Lemma, equivalence between weak confluence and the Church-Rosser prop-
erty, termination theorems based on commutation properties) are best presented using informal
“diagram chasing arguments”. This is illustrated by Fig. [l where the same state of a typical
proof is represented three times. Informal diagrams are drawn on the left. The goal listed
in the middle corresponds to a naive formalisation where the points related by relations are
mentioned explicitly. This is not satisfactory: a lot of variables have to be introduced, the goal
is displayed in a rather verbose way, the user has to draw the intuitive diagrams on its own
paper sheet. On the contrary, if we move to an algebraic setting (the right-hand side goal),

R : S* R,S: relation P
/ \ H: Vp,r,q, Rpr—8*r
.—,7 H 77. s

q
— 3 s, S* p s & R* q
S* ™. R* pP,9,9’,s: P
- - Hpq: R p q
R/ \S* % Hgs: S* q s R,S: X
. . Hsq’: R* s q’ H: R-8* C S8*-R*
g No I 3s: P, S*ps &R sq’ R-(S*-R*) C S*-R*

Figure 1: Diagrammatic, concrete, and abstract presentations of the same state in a proof.

*Work partially funded by the French ANR projet blanc “Curry-Howard pour la Concurrence” CHOCO
ANR-07-BLAN-0324



where binary relations are seen as abstract objects, that can be composed using various oper-
ators (e.g., union, intersection, relational composition, iteration), statements and Coq’s output
become rather compact, making the current goal easier to read and to reason about.

Some technology is then required to avoid handling some administrative steps explicitly,
which were somehow hidden in concrete proofs contexts. For example, in the right-hand side
proof state of Fig. we first need to re-arrange parentheses in order to be able to rewrite
the goal using hypothesis H. This drawback is eliminated by defining adequate tactics to work
modulo associativity and commutativity.

More importantly, moving to the abstract setting allows us to implement several decision
procedures that could hardly be stated with the concrete presentation. For example, once we
rewrite H in the right-hand side goal of Fig. [l we obtain the inclusion S*-R*-R*CS*-R* which is
a (straightforward) theorem of Kleene algebras: it can be proved automatically thanks to the
tactic we describe in this paper.

Outline. We recall the required mathematical background and we sketch the structure of the
tactic in Sect.[Il We give some details about the underlying design choices in Sect. 2l Sect.
focuses on the algebraic part of the correctness proof, and the implemented algorithms are
described in Sect dl We conclude with directions for future work in Sect. [l

1 Deciding equalities in Kleene algebras

Theoretical background. A Kleene algebra [22] is a tuple (X, -, +, 1,0, x), where (X, -, +,1,0)
is an idempotent non-commutative semiring, and x is a unary operation on X, satisfying the
following axiom and inference rules (where < is the preorder defined by z <y 2 z+y=1y):
a-r<x x-a<cx

l+a-a*<a* _— —_—
a-rx<x rx-a <z
Models of Kleene algebras include regular languages, where the star operation is language iter-
ation; and binary relations, where the product (-) is relational composition, and star is reflexive
and transitive closure (in this model, the above rules basically state that a* is the least reflexive
element which is stable under composition with a).

Thanks to finite automata theory (among others, Kleene [2I], Rabin & Scott [29], Nerode [28]),
equality of regular languages is decidable:

“two regular expressions denote the same reqular language if and only if the corre-
sponding minimal automata are isomorphic”,

and minimal automata can be computed as follows: 1) construct a non-deterministic finite au-
tomaton with epsilon-transitions (e-NFA), by structural induction on the regular expression; 2)
remove epsilon-transitions to obtain a non-deterministic finite automaton (NFA), by computing
the closure of epsilon-transitions; 3) determinise the automaton using the accessible subsets con-
struction, to obtain a deterministic finite automaton (DFA); 4) minimise the DFA by merging
all states that are equivalent according to Myhill-Nerode’s relation.

However, the above theorem is not sufficient to decide equality in all Kleene algebras: it only
applies to the regular languages model. We actually need a more recent theorem, by Kozen [22]
(also independently proved by Krob [24]):

“if two regular expressions a and (8 denote the same reqular language, then a = (3
can be proved in any Kleene algebra”.



In other words, the algebra of regular languages is initial among Kleene algebras: we can use
the above decision procedure to solve equations in an arbitrary Kleene algebra A. The main
idea of Kozen’s proof is to encode automata using matrices over A, and to replay automaton
algorithms at this algebraic level. Indeed, a finite automaton with transitions labelled by the
elements of A can be represented with three matrices (u, M,v) € My, X My X My 12 nis
the number of states of the automaton; v and v are 0-1 vectors respectively coding for the sets
of initial and accepting states; and M is the transition matrix: M; ; is non-empty if there is a
transition from state ¢ to state j. This corresponds to the definition of an e-NFA; definitions of
NFAs and DFAs can easily be recovered by adding conditions on matrices u and M.

We remark that the product w- M - v is a scalar, which can be thought of as the set of
one-letter words accepted by the automaton. Therefore, in order to mimic the actual behaviour
of a finite automaton, we just need to iterate over the matrix M. This is possible thanks to
another theorem, which actually is the crux of the initiality theorem: “square matrices over
a Kleene algebra form a Kleene algebra”. We hence have a star operation on matrices, and
we can interpret an automaton algebraically, by considering the product w - M* - v. In the
regular languages model, this expression actually corresponds to the language recognised by the
automaton. We give more details about this proof in Sect.

Overview of our strategy. We define a reflexive tactic. This methodology is quite standard:
it is described in [2] and it was used by Grégoire and Mahboubi to obtain the current ring
tactic [I5]. Concretely, this means that we implement the decision as a Coq program (Sect. ,
so as to be able to prove its correctness within the proof assistant (Sect. :

Definition decide_Kleene: regexp — regexp — bool := ...
Theorem Kozen: V a,b: regexp, decide_Kleene a b = true — a = b.

The above statement corresponds to Kozen’s theorem in the special case of the “free Kleene
algebra”: regexp is the obvious inductive type for regular expressions over a given set of vari-
ables, and = is the inductive equality generated by the axioms of Kleene algebras. Using Coq’s
reification mechanism, this is sufficient for our needs: the result can be lifted to other models
using simple tactics (we return to this point in Sect. .

The equational theory of Kleene algebras is PSPACE-complete [25] 26]. Indeed, the deter-
minisation phase of the algorithm we sketched above can produce automata of exponential size.
Although this is not the case on the typical examples we tried, where our tactic runs almost
instantaneously, this means that the decide_Kleene function must be written with some care,
using efficient out-of-the-shelf automaton algorithms. Notably, the matricial representation of
automata is not efficient for all stages of the decision procedure. Therefore, we need to work
with other data-structures for automata, and to write the corresponding translation functions
in order to reason about the algorithms in the uniform setting of matricial automata. We detail
and justify our choices about these algorithms and data structures in Sect.

2 Underlying design choices

Before going through Kozen’s proof (Sect. [3) and giving details about our implementation of
the decision procedure (Sect. , we explain the main choices we made about the structure of
our development: how to represent the algebraic hierarchy, how to represent matrices, how to
manage matrix dimensions, and how to resort to syntactical objects using reification.



2.1 Algebraic hierarchy

The mathematical definition of a Kleene algebra is incremental: it is a non-commutative semir-
ing, which is itself composed of a monoid and a semi-lattice. Moreover, proofs naturally follow
this hierarchy: when proving results about semirings, one usually rely on results about both
monoids and semi-lattices. In order to structure our development in a similar way, we defined
the algebraic hierarchy using Coq’s recent typeclasses mechanism [30]: we defined several classes,
corresponding to the different algebraic structures, so as to obtain the following “sub-typing”
relations (these relations are projections, declared as morphisms to the typeclass system):

Semilattice <:

Monoid < SemiRing <: KleeneAlgebra <: ...

The other possibilities were to use canonical structures or modules. We tried the latter one;
it was however quite difficult to organise modules, signatures and functors so as to obtain the
desired level of sharing between the various proofs. In particular, when we consider more com-
plex algebraic structures, we can no longer work with syntactical sub-typing between structures
(we only have functors from one structure to another) and we lose the ability to directly use
theorems, definitions, and tactics from lower structures in higher structures.

Except for some limitations due to the novelty of this feature, typeclasses happen to be much
easier to use for our purposes: sharing is obtained in a straightforward way, the code does not
need to be written in a monolithic way (as opposed to using functors), and it brings nice solutions
for overloading notations (e.g., we can use the same infix symbol for multiplication in a monoid,
a semiring, or a matrix semiring). We currently try to compare our strategy with that from [14]
D, 13], which is based on canonical structures. Although the aims of canonical structures and
typeclasses are quite close, the underlying mechanisms lead to different constraints.

2.2 Matrices

Coq definition. A matrix can be seen as a partial map from pairs of integers to a given type
X, so that a Coq definition of matrices and the sum operation could be the following:

Definition MX (n m: nat) := V i j, i<m — j<n — X.

Definition plus nm (M N: MX n m) i j (Hi: i<n) (Hj: j<n) := M i j Hi Hj + N i j Hi Hj.
This corresponds to the dependent types approach: a matrix is a map to X from two integers
and two proofs that these integers are lower than the bounds of the matrix. Except that
they use vectors, this is the approach followed by [5 [13] and [6]. With such a representation,
every access to a matrix element must be made by exhibiting two proofs, ensuring that the
indices lie within the bounds. For simple operations like the above plus function this is not
so problematic, this however requires more boilerplate when writing more complex operations
like matrix multiplication or block decomposition operations. We actually chose to move these
bounds checks to equality proofs only, by working with the following definitions:

Definition MX n m := nat — nat — X.

Definition equal nm (M N: MX n m) :=V i j, i<n — j<m — M i j == N i j.

Fixpoint sum i k (f: nat — X A B) := match k with 0=0 | S k=f i + sum (S i) k f end.
Definition dot n m p (A: MX n m) (B: MX m p) := fun i j = sum O m (fun k=M i k - N k j).

Here, a matrix is an infinite function from pairs of integers to X, and equality is restricted to
the domain of the matrix. With these definitions, we do not need to manipulate proofs when
defining matrix operations (like the above dot function), so that these definitions are both easier
to write and more efficient to compute with. Bounds checks are required a posteriori only, when
proving properties about these matrices operations, e.g., associativity of the product. This is
easy in most cases: these proofs are done within the interactive proof mode, and can often be



solved with high level tactics like omega. We have not yet found drawbacks to this approach,
we do not know whether it scales to more intensive usages like linear algebra [13].

Phantom types. Unfortunately, these definitions allow one to type the following code, where
the three additional arguments of dot are implicit:

Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

This definition is accepted by Coq because of the conversion rule: since MX n m is a dependent
type that does not mention n nor m in its body, these type informations can be discarded by the
Coq type system, using the conversion rule (MX n 16 = MX 64 p). This is not so terrible: such
an ill-formed definition will be detected at proof-time. It is however a bit sad not to benefit
from the advantages of a strongly typed programming language here. We partially solved this
problem by resorting to an inductive singleton definition, reifying bounds in phantom types:

Inductive MX (n m: nat) := box: (nat — nat — X) — MX n m.
Definition get (n m: nat) (M: MX n m) := match f with box f = f end.
Definition plus (n m: nat) (M N: MX n m) := box nm (fun i j = get M i j + get N i j).

Coq no longer equates types MX n 16 and MX 64 p with this definition, so that the above i11_dot
function is rejected, and we can trust inferred implicit arguments (e.g., the m argument of dot).
However, we need to artificially introduce the box at each matrix construction — get can be
declared as a coercion. We still look for a better solution to this problem.

Computation. From a computational point of view, using lazy functions as a representation
for matrices is two-edged : on the one hand, if the resulting matrix of a computation is seldom
used, then computing the result point-wise, by need, is efficient; on the other hand, making
numerous accesses to the same expensive computation may be a burden. Therefore, we have
defined a memoisation operator that computes every point of a matrix, store the result in an
associative map, and returns a function (of the same type) that accesses the associative map
instead of recomputing the result. Since this memoisation operator can be proved to be an
identity, it can be inserted in our code in a transparent way, at judicious places.

Lemma mx_force_id : Vnm (M : MX n m), mx_force M == M.

2.3 Graded algebras, typed reification

Adding types. Square matrices over a semiring form a semiring, and Kozen needed the
extension of this folklore result to Kleene algebras [22]. For rectangular matrices, the various
operations are only partial: dimensions have to agree. Therefore, with naive definitions of the
algebraic structures, we are unable to use theorems and tools developed for monoids, semi-
lattices, and semirings to reason about rectangular matrices. To remedy this problem, we

T: Type.
X: Type. X: T— T — Type.
dot: X — X — X. dot: Vnmp, Xnm—Xmp—Xn p.
one: X. one: V n, X nn.
plus: X — X — X. plus: V n m, Xnm—Xnm—Xnm.
zero: X. zero: V n m, X n m.
star: X — X. star: V n, Xnn—-Xnn
dot_neutral_left: dot_neutral_left:
V x, dot one x = x. Vnm(x: X nm), dot one x = X.

Figure 2: From Kleene algebras to typed Kleene algebras.



generalised algebraic structures from the beginning, using types, which corresponds to working
with graded algebras. An example is given in Fig. a typical signature for semirings is
presented on the left-hand side; we moved to the signature on the right-hand side, where a set
T of types (or indexes) is used to constrain the various operations. These types can be thought
of as matrix dimensions; we can also remark that we actually moved to a categorical setting: T
is a set of objects, X n m is the set of morphisms from n to m, one is the set of identities, and
dot is composition. As expected, with such definitions, one can form arbitrary matrices over a
typed structure, and obtain another instance of this typed structure:

Instance mx_SemiRing: SemiRing — SemiRing := ...

Instance mx_KleeneAlgebra: KleeneAlgebra — KleeneAlgebra := ...

(The above code relies on our use of maximally inserted implicit arguments for the carrier and
operations of the algebraic structures.) Then, thanks to typeclasses, we inherit all theorems,
tactics, and notations we defined on generic structures, at the matricial level. Notably, when
defining the star operation on matrices over a Kleene algebra, we can benefit from all tools for
semirings, monoids, and semi-lattices, at the matricial level. This is quite important since this
construction is rather complicated.

Removing types. Typed structures not only make it easier to work with matrices, they
also give rise to a wider range of models. In particular, we can consider heterogeneous binary
relations (between two distinct sets), rather than binary relations on a fixed set. This leads to
the following question: can the usual decision procedures (for semi-lattices, semirings, and the
one presented here for Kleene algebras) be extended to this more general setting?

Consider for example the equation a - (b- a)* = (a - b)* - a, which is a theorem of typed
Kleene algebras as soon as a and b are respectively given types n — m and m — n, for some
n,m; how to make sure that the proof obtained by computing minimal (untyped) automata
and concluding using Kozen initiality theorem is actually a valid, well-typed, proof?

For efficiency and practicability reasons, re-defining our decision procedures to work with
typed objects is not an option (they are written as reflexive tactics). Instead, we managed to
prove the following theorem, which allows one to erase types, i.e., to transform a typed equality
goal into an untyped one:

TS Fu=wv l'Fu>a:n—-m Fr'Fov>pB:n—-m
AFa=06:n—m

(%)

Here, ' F u > o : n — m reads “under the evaluation and typing context I', the untyped
term u can be evaluated to «, of type n — m”; this predicate can be defined inductively in a
straightforward way, for various algebraic structures. The theorem can then be rephrased as
follows: “given an untyped equality proof of u and v, and typed interpretations « and g for
u and v, we can construct a typed proof of a = 7. We proved it for semi-lattices, monoids,
semirings, and Kleene algebras, so that all of our decision tactics apply to the typed setting
— and in particular, to matrices. While this theorem is trivial for semi-lattices, and rather
simple for monoids, difficulties arise with semirings and Kleene algebras, due to the presence
of annihilator elements. Also note that Kozen investigated a similar question [23] and came up
with a slightly different solution: he solves the case of the Horn theory rather than equational
theory, at the cost of working in a restrained form of Kleene algebras. He moreover relies on
model-theoretic arguments, while our considerations are purely proof-theoretic.

Typed reification. The above discussion about types raises another issue: reflexive tactics
need to work with syntactical objects. For example, in order to construct an automaton, we
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need to proceed by structural induction on the given expression. This step is commonly achieved
by moving to the free algebra of terms, and resorting to Coq’s reification mechanism (quote).
However, this mechanism does not handle typed structures, so that we needed to re-implement
it. Since we do not have binders, we were able do this within Ltac: it suffices to eapply
theorem () to the current goal, so that we are left with three goals, with holes for u, v and
I'; then by using an adequate representation for I'; and by exploiting the very simple form of
the typing and evaluation predicate, we are able to progressively fill these holes and to close
the two goals about evaluation by repeatedly applying constructors and ad-hoc lemmas about
environments. Unlike Coq’s standard quote, which works by conversion and has no impact on
the size of the current proof, this “lightweight”’-quote generates rather large proof-terms. We
would like to understand whether this situation can be improved, still remaining within Ltac.

3 Kozen’s proof

The tactic we describe here relies on Kozen’s initiality theorem: to prove that an equality
a = (8 holds in any Kleene algebra, it suffices to check that the underlying minimal automata
are isomorphic. The overall structure of Kozen’s proof is depicted on Fig. [3} bullets represent
idealised standard automaton constructions; the proof consists in showing that each construction
can be related to a matricial automaton, whose interpretation is provably equal to the initial
expression; we finally conclude by transitivity, if the minimal automata coincide. We briefly
sketch the inner steps of this proof, i.e., the algebraic part, letting the reader refer to [22] for
more details. The algorithms corresponding to the outer arrows are described in Sect.

Building automata. There are several ways of constructing an e-NFA from a regular expres-
sion [33]. We chose Thompson’s construction [32] because of its simplicity: as described in [22],
this is only a matter of block matrix constructions, and we easily show that the e-NFA built
from « evaluates to «, using algebraic laws. For example, the automaton for a sum is defined,
and proved correct, as follows; the other constructions are obtained in a very similar way.

[uls]- [1‘04 H {ﬂ:[us]. []‘g ]3] [ﬂ:..-:u.M*-Hs.N*.t



While these constructions are rather simple, they heavily rely on block matrix properties. The
fact that we do not use dependent types to represent matrices greatly helps here.

Removing e-transitions. The automata obtained with Thompson’s construction may con-
tain e-transitions: their transitions matrices can be written as M = J + > s a - Ng, where
J and the N, are 0-1 matrices, and J corresponds to the graph of e-transitions. Removing
these transitions to obtain an NFA usually means computing their reflexive and transitive clo-
sure, to update the other transitions. This can be done algebraically: thanks to the identity
(a+b)* = a*-(b- a*)”* (a theorem of Kleene algebras), we have u-(J+N)*-v = u-J*- (N - J*)*-0,
and the automaton on the right (u - J*, N - J*,v) no longer contains e-transitions. Indeed, J*
corresponds to the reflexive transitive closure of J.

Determinisation. The determinisation algorithm we implemented builds a DFA whose states
are sets of states from the initial NFA; it consists in enumerating the set of subsets of states
that are accessible from the set of initial states. Starting from a NFA (u, M, v) with n states,
this algorithm returns a DFA ((u), (M), (v)) with (n) states, together with a map p from [1..(n)]
to the subsets of [1..n]. We sketch the algebraic part of the correctness proof. By letting X
denote the ({n),n) 0-1 matrix defined by Xs; £ j € p(s), we prove that the returned automaton
satisfies the following commutation properties:

(M)-X =X -M (1) W) -X=u (2) W) =v-X (3)

The intuition behind X is that this is a “decoding” matrix: it sends the characteristic vectors
of states of the DFA to the characteristic vectors of the corresponding subset of states from
the NFA. Therefore, (1) can be read as follows: executing a transition in the DFA and then
decoding the result amounts to decoding the given state and executing parallel transitions in
the NFA. Similarly, (2) states that the initial state of the DFA corresponds to the set of initial
states of the NFA. From (1), we can deduce (M)* - X = X - M* using a theorem of Kleene
algebras, and we can conclude with (2, 3): the two automata evaluate to the same value:

() - (MY (v) = (u) - (MY X v ={u) - X M v=u-M"-v .

Minimisation. The algebraic part of the correctness proof for minimisation is similar to that
for determinisation. Starting from a DFA (u, M,v), the algorithm computes a partition of
states, such that equivalence classes are stable under transitions and refine the partition of
states between final and non-final. This partition is computed using Hopcroft’s minimisation
algorithm, which is described in Sect. |4} it is then converted into a map [.] sending each state
of the given DFA to the canonical representant of its equivalence class. This map allows us to
define a decoding matrix Y by letting Y;; £ [i] = j, and the minimised automaton (4, M, ) is
defined by:

M2YT . M.Y GT2u.Y 72YT .y,

We finally prove that Y - M=M-YandY o =0 (the first equality means that merging
equivalence classes and then computing transitions in the minimised automaton amounts to
computing transitions in the initial automaton and then merging the resulting states). As
previously, this yields @ - (]\/4\ )* U =wu-M*-v: the automata are equivalent.
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4 Implementing the decision procedure

We now focus on the external part of Fig. that is, the algorithmic details of our imple-
mentation. As explained in the introduction, the equational theory of Kleene algebras being
PSPACE-complete, we have to care about efficiency. This drives our choices about both data-
structures and algorithms: accessible subset construction for determinisation, and Hopcroft’s
minimisation algorithm [I].

Boolean matrices. One cannot work with matrices over the free Kleene algebra: there are
many terms that will never appear in automata matrices (like (a + 1)*), and we would need to
reason modulo the axioms of Kleene algebras, that equate, e.g., 1 + a and 0* 4+ (1 4+ 0-) - a.
Since Thompson’s construction yields automata whose transition matrix can be written as
M = J+ 3% ,cxna- N, where J and the N, are 0-1 matrices, it actually suffices to work
with matrices built upon the Kleene algebra of booleans: (bool,andb,orb,true, false ,fun _=true).
Then, in proofs, we inject these matrices into those built upon the free Kleene algebra (e.g., for
evaluating automata formally). This allows us to write optimised functions for boolean matrices:
there are only two values to consider and we can exploit laziness. In particular, removing e-
transitions can be done easily and efficiently with this representation of automata: as showed
in Sect. 3] it suffices to compute the star of a boolean matrix (J*), and some multiplications
(u-J* and the N, - J*).

FSets. The matricial representation of automata is no longer adequate when it comes to
determinisation and minimisation. Therefore, starting from the e-free NFA we built, we convert
our matrices to more convenient representations, like transition functions. As can be seen on
Fig. [4, we start with non-deterministic transition functions that map states to sets of states,
and we later use deterministic transition functions that map states to states. To build efficiently
these functions, we use the finite sets and finite maps libraries of Coq to represent state sets,
partitions of states, and so on... These libraries being rather complete, this also gives us proper
tools for proving the correction of our algorithms, and linking these structures to the matricial
representation of automata (the horizontal arrows from Figs. [3] and [)).
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let (P,L) := acc in
({pf, pt} U P\p,
update_splitters p pf pt L))
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end

Definition delta_inv: ) P (P,L).

fset state — label — fset state :=

Function loop P L {wf RPL (P,L)} :=

Definition splittable p a q := match choose L with

let inv := delta_inv a q in | None = P
let (pt,pf) := partition (fun i =i € inv) p | Some x = loop (split P (L\x) x)
in if is_empty pt || is_empty pf

then None end.

1 t,pf).
else Some (pt,pf) Definition partition :=

loop
{finals, states\finals}
(labels x {finals}).

Definition update_splitters p pf pt L :=
fold (fun a L = if (a,p) € L
then {(a,pf),(a,pt)} U L\(a,p)
else if cardinal pf < cardinal pt
then {(a,pf)} UL
else {(a,pt)} UL
) labels L.

Figure 5: Coq code for minimisation.

Determinisation. Determinisation is exponential in worst case: this is a power-set construc-
tion. However, examples where this bound is reached are rather contrived, and the practical
complexity is much better: most subsets of states cannot be reached from the subset of initial
states. It is therefore crucial to implement the accessible subset construction, so as to avoid
useless computations. We only give a very high level view of our implementation here: the
standard algorithm is basically a while loop; that we translate into a tail-recursive fix-point;
termination is not structural: it requires us to compute the exponential worst case bound, and
we use a standard trick in order to avoid this useless and problematic computation. The proof
of the algorithm requires us to find the adequate invariant for the loop; due to tail-recursion,
this rather large invariant cannot be defined progressively with Coq’s help: it has to be defined
by hand, in a monolithic way.

Minimisation. We have to compute the Myhill-Nerode equivalence relation, which equates
states sharing the same behaviour, i.e., accepting the same the language. The Coq implementa-
tion of Hopcroft’s algorithm [17, [I] is sketched in Fig. |5} it consists in a ‘while’ loop containing
two nested ‘for’ loops, translated using the fold operation of finite sets. The termination of
the external loop is ensured using a well-founded relation (the algorithm could be rewritten so
as to use structural recursion only, we found the resulting code less clear and harder to prove,
however).

The idea of the algorithm is to start from an initial partition of states (final and non final
states), and to refine this partition whenever one of its elements is splittable: i.e., when a
move from a set of state can lead to two different sets by a transition with a given label a. The
implementation of this predicate is made efficient by precomputing the inverse transition graph
(delta_inv). Hopcroft then uses a set L of splitters, i.e., pairs (label, state set) w.r.t. which
one must attempt to split classes of the partition. The crux of the algorithm is to keep from
adding too much redundancy in L: if a pair (a,q) is not in this set, then either every class of
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the partition is already split w.r.t. (a,q), or L contains enough pairs to subsume (a,q).

Treading through L in the main loop function, we dismiss the pairs (a,q) that do not split
equivalence classes, and we update our partition P and the set L when (a,q) splits an equivalence
class p into pf and pt. The update of potential splitters in L is based on the following remark:
when p is split into pf, pt, then, for any label a, it suffices to split every other class q w.r.t.
any two of (a,p), (a,pf), and (a,pt). If (a,p) €L, we must add both sub-splitters; if (p,a) ¢L,
then L subsumes (p,a) and it suffices to add the smallest of (a,pf) and (a,pt) to LHAt the end
of the algorithm, since L is empty, we know that the equivalence classes of P cannot be split
anymore: P is the Myhill-Nerode equivalence relation.

Avoiding automata isomorphism. The languages denoted by two regular expressions are
equal if and only if their respective minimised automata are equal up-to isomorphism. By
exploring all state permutations, this is sufficient to obtain decidability of regular languages
equality. One can do a little better, however: it is not necessary to look for such a permutation.
Suppose that languages o and 3 are represented by two DFAs; minimise the automaton whose
set of states is the union of the states of the DFAs (i.e., the sum automaton), and test if the
initial states of the two original DFAs are merged: these states are equivalent if and only if the
DFAs recognise the same language, i.e., « = . This ends our description of the algorithm.

5 Conclusions and directions for future work

We presented a reflexive tactic for deciding Kleene algebra equalities. This tactic belongs to
a broader project whose aim is to provide algebraic tools for working with binary relations in
Coq; the development can be downloaded from [§]. To our knowledge, this is the first efficient
implementation of these algorithms in Coq, and their integration into a generic tactic.

At the time we started this project, Briais formalised decidability of regular languages
equalities [9] (but not Kozen’s initiality theorem), without taking care about efficiency: deter-
minisation is always exponential; instead of minimising automata, he relies on the ‘pumping
lemma’ to enumerate the finite set of accepted ‘small enough’ words. As a consequence, even
straightforward identities cannot be checked by letting Coq compute. These preliminary results
lead us to restart from scratch and to look for a better strategy.

Narboux defined a set of tactics for formalising diagrammatic proofs in Coq [27]. He works
in the concrete setting of binary relations, which makes it possible to represent more diagrams,
but does not scale to other models. The level of automation is rather low: it basically reduces
to a set of hints for the auto tactic.

Hofner and Struth used the automated first-order theorem prover Prover9 to automati-
cally verify facts about boolean and relation algebras [18]. While these algebras feature the
intersection and complementation operators (hence imposing a classical setting), they do not
contain the Kleene star operation. Our approaches are quite different: while we implemented
a decision procedure, their proposal is based on heuristics and learning techniques, within a
resolution/paramodulation based framework.

We conclude this paper with directions for future work.

Optimisations. Even if our tactic works almost instantaneously on simple examples, such as
the ones appearing in typical algebraic proofs, there is room for optimisation.

!The latter optimisation happened to be rather difficult to prove correct, so that we deactivated it our first
release: the inner ‘if’ statement in the update_splitters function is replaced by (a,pf)U(a,pt)UL
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e We use unary integers to represent states; this is a drawback when we memoise matrices
or make comparisons of state sets. A first step would be to move to Coq’s binary nat-
ural numbers (N); we plan to resort eventually to either n-ary integers [16], or machine
integers [31].

e Although the algorithms we implemented for determinisation and minimisation are rather
optimal, this is not the case for our construction algorithm (Thompson’s one): we could
use other algorithms [4), (10} 19], that produce smaller automata. Indeed, the complexity
of the determinisation stage being potentially exponential in the size of the starting NFA,
producing smaller automata from the beginning would improve the overall complexity.

e We have to implement a better algorithm for elimination of e-transitions, which seems
to be the current bottleneck of our tactic. This problem could also be solved by directly
constructing e-free automata, like Glushkov’s one, or implement a construction like the
one proposed in [19], which results in automata that do not contain cycles of e-transitions
— yielding to faster transitive closure algorithms.

Richer algebras. Kleene algebras lack several important operations from binary relations:
intersection, converse, complement, residuals... We would like to develop tools for the corre-
sponding algebras:

e Kleene algebras with converse should be decidable: since the converse operation commutes
with all operations, we can imagine to push converses to the leafs of the terms, before
applying our tactic for Kleene algebras.

e Residuated semirings [20], i.e., semirings with residual operations are decidable thanks to
a Gentzen proof system having the sub-formula property. We plan to implement proof
search for this proof system, either directly in Ltac, or using an external program to
produce a trace that would then be reinterpreted as a Coq proof.

o Allegories [12] or relation algebras have an undecidable equational theory; they however
provide means of encoding properties like well-foundedness [11], so that it would be inter-
esting to provide tools for these structures (e.g., for solving decidable fragments).

Rewriting modulo A/AC. As explained in the introduction, some technology is required
in order to work implicitly modulo associativity (A) and/or commutativity (C). For example,
in the contexts below, we would like to rewrite the goal using hypothesis H without having to
manually rearrange the goal first.

R,S,U,V: X R,S,U,V: X R,S,U,V: X
H: U-V = R H: U+V = R H: V T, T-(T+U+V) =T
(U-U)-V =8 V+S+U = S (U-R) - (V+R+U) = S

For this development, we wrote ad-hoc tactics ac_rewrite and monoid_rewrite that work in
simple cases like the first two examples. However, a more systematic approach is required in
order to handle situations like the third one. We plan to pursue Beauquier’s work on this
topic [3]: we would like to implement algorithms for matching modulo A and AC [7], and to
integrate the resulting (external) program with Coq, in order to obtain more satisfying tools
for rewriting modulo A and AC.
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Abstract

Advances in SAT technology have made it possible for the SAT solvers to solve much bigger
instances of problems using fewer resources. Much of the speed of these solvers comes from
well-crafted optimizations but these complicate the implementations of the solvers, and make
them vulnerable to bugs. However, assurance can be re-gained by use of a checker that validates
the outcome of the solver. Two important aspects of this approach are (i) to ensure that the
checker program itself is bug free, and (ii) is easy-to-use as a standalone executable.

We have designed and implemented a SAT proof checker using the Coq proof assistant. Our
checker is capable of validating a SAT or an UNSAT claim of a SAT solver. In this paper we
report on the more interesting aspect of checking the unsatisfiability claims, which have the form
of a ground resolution proof. We present our formalization of the checker as a set of definitions
within Coq, and characterize and prove its correctness properties. The proofs have been all
machine checked in Coq, and an equivalent Ocaml executable program is extracted that can
be used independently of the proof-assistant itself. Finally, we present some early evaluation
results on industrial benchmarks to illustrate the strength of the extracted checker.

1 Introduction

Advances in SAT technology have made it possible for SAT solvers to be routinely used in the
verification of large industrial problems. Moreover, they are now also used as back-end verifica-
tion engines in several safety-critical domains such as railway systems [1] and avionics [2]. Such
applications require some form of formal certification or guarantee that they are correct.

However, much of the performance enhancements in SAT technology come from well-crafted
optimizations that make the SAT solvers vulnerable to implementation bugs. At the same time
their complexity makes formal proofs of their correctness extremely difficult. For example, Lescuyer
et al [3] formalized a SAT solver in the Coq proof assistant and extracted an executable program.
The resulting program was mathematically rigourously checked, but its performance suffered, due
to the lack of optimizations. Reasoning about these optimizations makes the formal correctness
proofs exceedingly hard, as shown by Marié¢ [4], who verified the pseudo-code of the SAT algorithm
used in the ARGO-SAT solver but did not verify the solver itself.



An alternative, and more effective approach for ensuring correctness is to not formalize the
SAT solver itself, but to instead formalize an independent checker in a proof-assistant, and use
that checker to validate the outcome of the SAT solver. Weber and Amjad |5] proposed the idea of
checking resolution proofs from SAT solvers by re-constructing them in LCF style higher-order logic
theorem provers Isabelle, HOL 4, and HOL Light. They imported the proof trace output obtained
from the proof-logging versions of Zchaff and Minisat into these theorem provers, and re-played
the proofs to check whether they are valid. The benefit of this approach is that they can rely on
the trusted LCF style kernel of the theorem provers to check the resolution proof obtained from
the trace. However, a problem of this approach is that users need to be able to use these theorem
provers in order to use the checker.

Our approach follows the general ideas of Weber and Amjad, but solves the (practical) problem
of their work by extracting a stand-alone checker that can be used independently of the proof
assistant. We have formalized and implemented a SAT checker called SHRUTI in Coq. Given a
CNF description of the problem, and a proof trace obtained from a SAT solver, our checker can
determine the validity of the claim made by the solver. Our formalization has two parts, one for
checking the satisfiability claim (SAT), and another to validate the unsatisfiability claim (UNSAT).
In this paper we present the formalization of the UNSAT part of the checker in the Coq proof
assistant. We present some preliminary evaluation results on the industrial benchmarks from the
SAT Race competition [6] to illustrate the strength of our approach.

2 Proof Checking Overview

Most SAT solvers can also produce a proof carrying the explanation about why the given problem
was unsatisfiable when they produce an UNSAT answer. Any checker should be able to read these
proof traces and should come up with a Yes/No answer depending on whether an outcome of the
SAT solver is correct or not. In fact many of these solvers such as Zchaff, Minisat, Picosat and
Booleforce provide a checker that does just that. However, none of these checkers are formally
certified for correctness.

An UNSAT proof trace is a representation of general resolution proofs consisting of the original
clauses used during resolution and the intermediate resolvents obtained by resolving the original
input clauses. The parts of the proof which are regular input resolutions are called chains. The
whole trace thus consists of original clauses and chains. Since a chain is a new proof rule, its input
clauses are called ‘antecedents’ and the final resolvent simply ‘resolvent’.

In order to design an efficient checking algorithm we made use of the resolution inference rule [7].
This rule takes a pair of clauses in disjunctive normal form, and produces a union of the two clauses,
cancelling any complementary literals present in the two clauses. Of course, it is assumed that the
input clauses themselves have no duplicate literals, and have no complementary literals within
themselves. It is well known that this inference rule is sound and complete for propositional logic
and the proof can be found in [8, 9]. When this inference rule is used to compute a resolution
derivation on a set of clauses such that each resolved variable (i.e., the variable that occurs in the
pair of complementary literals) is distinct and each clause is either an input clause or a derived
clause obtained by the application of the resolution rule, the resolution derivation is called trivial
resolution [10]. We often use the term ‘trivial resolution’ to mean the application of the ‘resolution
inference rule’ since the application of the latter results in a trivial resolution.

The use of resolution rule ensures that the number of resolution steps taken to compute the final
resolvent of a chain is linear with respect to the number of antecedents within the chain. Thus the



computation of a final resolvent in a chain begins at one end of the chain (in our case left most end
of the chain) and uses each antecedent within the chain only once.

We decided to test our certified checker by reading the proof trace formats generated by Picosat,
because it can also generate proof traces readable in ASCII form as compared to some of the other
proof logging versions of solvers that only produces binary versions. Picosat [11] was also voted
as one of the best SAT solvers in the industrial category of SAT Race 2007. Like many SAT
solvers, Picosat reads the problem representation in DIMACS [12] notation. This uses non-zero
integers to denote literals. A positive variable is denoted by a positive integer while its complement
uses a negative integer. Zeroes are only used as delimiters. As an example consider the following
unsatisfiable formula adapted from the README.tracecheck file distributed with Booleforce. It
consists of all possible binary clauses over the two variables 1 and 2.

1 2 0
-1 2 0
1 -2 0
-1 -2 0

The zeroes at the end of rows are delimiters. A Picosat proof trace consists of such rows representing
the input clauses, followed by rows encoding the proof chains. Each “chain row” consists of an
asterisk (*) as place-holder for the chain’s resolvent,! followed by the identifiers of the clauses
involved in the chain. Each chain row thus contains at least two clause identifiers, and denotes an
application of one or more of the resolution inference rule, describing a trivial resolution derivation.
Each row also starts with a non-zero positive integer denoting the identifier for that row’s (input
or resolvent) clause. In an actual trace there are additional zeroes as delimiters at the end of each
row, but we remove these before we start proof checking. The input to our checker thus looks as
follows:

1 1 2
2 -1 2
3 1 -2
4 -1 -2
5 * 31

6 * 4 2 5

The first four rows denote the input clauses from the original problem (see above) that are used
