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Preface

This first edition of the Coq workshop aimed at gathering the community of Coq users
and developers around refereed contributed talks (to be later on re-submitted for pub-
lication to the Journal of Formalized Reasoning) and discussions on Coq. The Pro-
gramme Committee consisted of:

Yves Bertot
Frédéric Blanqui
Jacek Chrząszcz
Eduardo Giménez
Georges Gonthier
Hugo Herbelin (chair)
Greg Morrisett
David Nowak
Benjamin Pierce

Advertised on the Coq Club and TYPES mailing lists, the workshop attracted seven
submissions which were given to three members to review, and in a few cases additional
reviews were solicited. The papers were discussed by e-mail within a 10-days period
and the Program Committee selected six papers for presentation and pre-publication
in these proceedings. In addition, the programme of the workshop included an invited
talk, by Georges Gonthier (joint invited speaker with the ACM SIGSAM 2009 Interna-
tional Workshop on Programming Languages for Mechanized Mathematics Systems –
PLMMS 2009).

I would like to thank all the authors who submitted a paper, and the Program Com-
mittee and external reviewers for the quality of their reports and for their feedback to
the authors. I would like to thank the Technical University of Munich, the organisation
committee of TPHOLs, especially Makarius Wenzel, Stefan Berghofer and Christian
Urban, who helped us in making the actual workshop go well and in providing support
for publishing these proceedings.

Through the Coq Technological Development Action, INRIA supported the work-
shop.

Hugo Herbelin
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Sets in Coq, Coq in Sets

Bruno Barras

INRIA Saclay - Île de France

The title of this article refers to Werner’s “Set in Types, Types in Sets” [13]. Our initial goal
was to build formally a model of the Calculus of Inductive Constructions (CIC), the formalism
of Coq. In [3], we formalized the syntactic metatheory of CIC and type-checking algorithms,
under the assumption that our presentation enjoys the strong normalization property, which is
the non-elementary step in proving the consistency of CIC.

The present work can be viewed as a first step towards the formalization of the semantics
of CIC, concluding to strong normalization and consistency. Of course, due to Gödel’s second
incompleteness theorem, this can be fulfilled only under some assumptions that strengthen
Coq’s theory (unless the formalism is inconsistent). This approach is similar to Harrison’s work
about verifying HOL Light [8].

It is well-known that the Calculus of Constructions (CC, [4]) admits a finite model that
is both classical and proof-irrelevant. The only requirement on such a model is to include
booleans and to be closed by arrow type (non-dependent product). No infinite set is involved
so we should be able to build a model of CC in the theory of hereditarily finite sets. However
simple this description may seem, actually building a model for the common presentation of
CC reveals technical traps as illustrated in [10]. The focus will be on the product fragment and
on universes of CIC. A complete formalization of inductive types requires a lot of work. To
show that our model construction can cope with inductive types, we have built a simple, yet
recursive, inductive type: Peano’s natural numbers. We have adopted a systematic approach
and departed from the usual representation of natural numbers (ordinal ω).

The formal definitions of this article1 can be organized in three categories: (1) developing
a Coq library of common set theoretical notions and facts about pairs, functions, ordinals,
transfinite recursion, Grothendieck universes, etc. (the Sets in Coq side), (2) building specific
ingredients for models of typed λ-calculi, and (3) building set theoretical models of those theories
within Coq (both fall into the Coq in Sets side).

1 Hereditarily finite sets

This is the Vω set: the set obtained by applying ω times the powerset operation on the empty
set. All the basic operations are decidable, so there is no distinction between intuitionistic and
classical variants. The type of hereditarily finite sets can be defined as the type of well-founded,
finitely branching trees:

Inductive hf : Set := HF (elts : list hf).

Of course, here we use lists for commodity, but order and repetition of elements in the list
is not relevant. We thus need to express the equality as a setoid, in order to have rewriting

1See http://www.lix.polytechnique.fr/Labo/Bruno.Barras/proofs/sets/.
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reasoning on sets. We will use the let (xl) := x in ... idiom (destructuring let) to get the
list of subsets.

Equality and membership These two notions are mutually recursive: two set are equal if
they contain the same elements, and a set is a member of another set if the latter contains an
element that is equal to the former. This informal definition cannot be used as-is in Coq because
of the strict syntactic guard condition that ensures that recursive definitions are well founded.
One solution is to inline the membership definition in the equality. We first define universal and
existential quantifiers on the members of a set. Note that they apply only structurally smaller
sets to the predicate.

Definition forall_elt (P:hf->bool) x := let (xl) := x in List.forallb P xl.
Definition exists_elt (P:hf->bool) x := let (xl) := x in List.existsb P xl.
Fixpoint eq_hf x y {struct x} : bool :=
forall_elt(fun x’ => exists_elt(fun y’ => eq_hf x’ y’) y) x &&
forall_elt(fun y’ => exists_elt(fun x’ => eq_hf x’ y’) x) y.

Definition in_hf x y := exists_elt (fun y’ => eq_hf x y’) y.

We then show the basic facts that eq_hf (noted ==) is an equivalence relation and that
membership (noted as usual ∈) is a morphism for our equality:

x == x′ ∧ y == y′ ∧ x ∈ y ⇒ x′ ∈ y′.

Finite Zermelo-Fraenkel The various operations of HF can be implemented easily:

Definition empty := HF nil.
Definition pair x y := HF(x::y::nil).
Definition union x :=
HF(fold_set(fun y l => let (yl):=y in yl++l) x nil).
Definition subset x (P:hf->bool) :=
HF(fold_set(fun y l => if P y then y::l else l) x nil).
Definition power x :=
HF(fold_set (fun y pow p => pow p ++ pow (y::p)) x

(fun p => HF (rev p) :: nil) nil).
Definition repl x (f:hf->hf) := let (xl) := x in HF(map f xl).

Let us recall that
⋃
x is the union of the all the elements of x, so a ∪ b is encoded as

⋃
{a; b}.

subset a P denotes {x ∈ a | P (x)} where P is decidable. The powerset Px (power x) is the
set of all subsets of x.2 The last operation is the replacement: repl a f stands for the informal
notation {f(x) | x ∈ a}, where f is a function of the meta-logic (Coq), so we can actually
compute with sets. Iterator fold_set has type ∀X, (hf → X → X) → hf → X → X and is
defined by fold_set f {x1; . . . ;xn} a = f x1 (. . . (f xn a) . . .) taking care to cancel repetition of
elements. This requirement will be used when defining the dependent product of two sets. A
slightly more readable notation for fold_set f x a is foldy∈x(X 7→ f(y,X)) a.

At this point we can prove that those operators give a model of the Intuitionistic Zermelo-
Fraenkel set theory (without the infinite set obviously). The eager reader can have a look at
figure 1 for the precise statement of the “axioms” of the theory. From now on, we will not have
to consider the actual representation of sets anymore.

2The rev is only for cosmetic reasons, so the elements of the subsets are displayed in the same order as the
original set.
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Ordered pairs and functions We follow the common usage to encode the ordered pair
(couple a b) written (a, b) as {{a}; {a; b}}. Function f is coded as the set of couples (x, f(x))
where x ranges a given domain set. Typing of functions lead to introduce dep_funcAB for
B : hf → hf, the set of dependent functions from (x ∈ A) to B(x), that is Πx∈AB(x). The
formalization is quite standard, so we simply list the definitions and main facts:

fst p :=
⋃
{x ∈

⋃
p | {x} ∈ p}

snd p :=
⋃
{y ∈

⋃
p | {fst p; y} ∈ p}

lam a f := {(x, f(x)) | x ∈ a}
app a b := snd

⋃
{p ∈ a | fst p == b}

dep_func A B := foldx∈A(X 7→ {{(x, y)} ∪ f | f ∈ X, y ∈ B(x)}) {∅}⋃
(a, b) = {a; b} fst (a, b) = a snd (a, b) = b

x ∈ a ⇒ app (lam a f)x = f(x)
(∀x ∈ a, f(x) ∈ B(x)) ⇒ lamAf ∈ dep_funcAB

f ∈ dep_funcAB ∧ x ∈ A ⇒ app f x ∈ B(x)
f ∈ dep_funcAB ⇒ f == lamA (λx. app f x)

The fact that fold_set f x a does not apply the same element of x twice to f is crucial so that
we actually build functional relations.

2 Intuitionistic Zermelo-Fraenkel

In this section, we will not proceed as for HF. Our primary goal is to use Coq as a prover for
IZF, rather than comparing the theoretical strengths of Coq and IZF. This is why we will first
proceed by defining a module interface that gathers the basic operations and axioms of IZF,
and build a library of set theoretical constructions together with their properties. To make
complex constructions easier, we have chosen a Skolemized presentation. Then, we will try to
instantiate the signature. Such attempt to give a model of set theory within Coq has already
been formalized by Werner.3 Here, we recoded this work, and pushed further the study of
universes.

2.1 IZF Axiomatization

We assume we have a type set:Type equipped with two relations == and ∈ such that set
equality is extensional and membership is a morphism:

a == b ⇐⇒ ∀x. x ∈ a ⇐⇒ x ∈ b and a == a′ ∧ a ∈ b =⇒ a′ ∈ b.

Next, sets can be constructed using the following constants: the empty and infinity sets, a
binary operation pair:set->set->set, two unary operators union and power, and the replace-
ment operator repl:set → (set → set → Prop) → set. They should satisfy the so-called
“axioms of ZF” listed in figure 1. Replacement is obviously the one that calls the most for
explanations. The introduction of a variable y′ equals to y is to deal with cases where R is not
a morphism.4 The side condition (R is functional) does not require R to be total (unlike in
HF). So, repl a R is the image of a by R, discarding those that are not in the domain of R.
This allows to derive the comprehension scheme from replacement.

3This formalization is available as the Rocq/ZFC user contribution of Coq.
4Assuming we have two extensionally equal sets y and y′ but intentionally distinct (y == y′ ∧ ¬y = y′), then

we could show that y belongs to repl {∅} (λ z. z = y), but y′ would not, in contradiction with the fact that ∈ is
a morphism.
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x ∈ empty =⇒ ⊥
x ∈ pair a b ⇐⇒ x == a ∨ x == b
x ∈ union a ⇐⇒ ∃y ∈ a.x ∈ y
x ∈ power a ⇐⇒ ∀y ∈ x.y ∈ a
y ∈ repl aR ⇐⇒ ∃x ∈ a.∃y′.y == y′ ∧R(x, y′)

(if ∀xx′ y y′. x ∈ a ∧R(x, y) ∧R(x′, y′) ∧ x == x′ → y == y′)
x ∈ infinite ⇐= x == empty ∨ ∃y ∈ infinite. x == y ∪ {y}

Figure 1: Axioms of Zermelo Fraenkel

Another important remark about replacement is that the relation is a Prop-valued relation,
as opposed to a first-order formula. This might strengthen the theory, since we can quantify
over proper classes, thanks to the impredicativity of Prop.

2.2 A library of IZF constructions

We are now ready to formalize basic constructions such as pairs, relations and functions mostly
in the same way as in HF, so we will resume the formalization at this point.

Disjoint sums The construction of a model for inductive types requires a notion of disjoint
sum, in order to ensure that constructors build distinct elements. The definitions and expected
properties about typing and elimination are the following:

inl a := (0,a)
inrb := (1,b)

inl a == inl a′ ⇒ a == a′

inr b == inr b′ ⇒ b == b′

inl a == inr b′ ⇒ ⊥

sumAB := {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B}
a ∈ A ⇒ inl a ∈ sumAB
b ∈ B ⇒ inr b ∈ sumAB

p ∈ sumAB ⇒ (∃a ∈ A, p == inl a) ∨ (∃b ∈ B, p == inr b)
A ⊆ A′ ∧ B ⊆ B′ ⇒ sumAB ⊆ sumA′B′

Ordinals and fixpoints The classical definition of ordinals as hereditarily transitive sets and
the successor of x as x+ = x ∪ {x} raises problems in an intuitionistic setting. As remarked
by Grayson, y < x+ is equivalent to y = x ∨ y < x, but not to y ⊆ x unless we are classical.
Taylor [12] introduced the notion of plump ordinals, which fixes that issue. Informally, a set x
is a plump ordinal if (1) every element of x is an ordinal, and (2) for all ordinal z such that
z ⊆ y ∈ x for some y, then z ∈ x. Since the term ordinal occurs negatively in condition (2),
we define ordinals in two steps. Firstly, plump u x stands for x is a plump ordinal included in
a well-founded set u; this is defined by well-founded induction on u. Secondly, we defined the
class isOrd of well-founded sets that are plump ordinals bounded by themselves:

plump u x := (∀y ∈ u, y ∈ x⇒ plump y y) ∧ (∀z y. y ∈ u ∧ plump y z ∧ z ⊆ y ∈ x⇒ z ∈ x)
isOrd x := Acc (∈) x ∧ plump x x

The plump successor of x is then the set of plump ordinals included in x. So, x+ = {y ∈ Px |
isOrd y}. To illustrate the difference, let us consider the ordinal 2: the classical successor of 1
is {∅; {∅}}, which is a boolean algebra. This contrasts with the plump successor of 1, which is
the set of all {∅ | P} for some proposition P . This forms a Heyting algebra.
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We can define a transfinite operator TR. Intuitionistically, we cannot distinguish zero, suc-
cessor and limit cases, so TR is parameterized by a step function F : (set→ set)→ set→ set
and the ordinal on which we iterate. Formally, TR is defined by replacement using the following
relation (defined impredicatively):

TR_rel o y := ∀P. (∀f α.(∀β ∈ α.P β f(β))⇒ P α F (f, α))⇒ P o y,

which is functional on the class of ordinals. This shows clearly the role of F : it produces the
intended value for α, given (1) a function collecting all intended values for ordinals β < α and
(2) α itself.

We define a specialized version of TR for the common cases where the limit case corresponds
to the union of the previous results: given F : set→ set,

TI F o := TR (λf α.
⋃
{F (f(β)) | β ∈ α}) o

The main property of TI is that

TI F α ==
⋃
{F (TI F β) | β < α}

This iterator has several interesting properties when F is monotone w.r.t. set inclusion
(∀x y. x ⊆ y ⇒ F (x) ⊆ F (y)): it forms an increasing sequence of sets all included in any
pre-fixpoint of F .

α ⊆ β ⇒ TI F α ⊆ TI F β TI F α+ == F (TI F α) F (x) ⊆ x⇒ TI F α ⊆ x

Grothendieck universes The collection Grothendieck universes grot_univ is the collection
of transitive sets U that are closed under all ZF operators: pairing, powerset, union and re-
placement (without assuming it contains the empty set or an infinite set). They have been
introduced to avoid resorting to proper classes, which can be replaced by subsets of a universe.
A set U is a Grothendieck universe if it satisfies the following closure conditions:

y ∈ x ∧ x ∈ U ⇒ y ∈ U
x ∈ U ∧ y ∈ U ⇒ {x; y} ∈ U

x ∈ U ⇒ P x ∈ U
I ∈ U ∧ (∀x ∈ U.∀y.R(x, y) ⇒ y ∈ U) ⇒

⋃
{y | ∃x ∈ I.R(x, y)} ∈ U
(R functional)

It is straightforward to derive that Grothendieck universes are closed under dependent product,
this is the reason why they play an important role in the interpretation of the Type hierarchy
of CCω and CIC.

Grothendieck universes are stable by non-empty intersection, so we can define a functional
relation between a universe U and the least universe that contain U , called the successor of U :

grot_succx y := grot_univ y ∧ x ∈ y ∧ (∀U. grot_univU ∧ x ∈ U ⇒ y ⊆ U)

Obviously, the successor universe cannot be built without an extra assumption. The Tarski-
Grothendieck set theory (the formalism of Mizar) is ZF where we assume that for any set, there
exists a universe that contains it. Clearly, in this theory, the replacement axiom lets us build
an infinite sequence of nested universes.
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2.3 An attempt to build a model of IZF

Model of IZF Following Peter Aczel’s work [1], (well-founded) sets can be encoded in a
tree-like datatype:

Inductive set : Type := sup (X:Type) (f:X->set).
Definition idx (x:set) : Type := let (X,f) := x in X.
Definition elts (x:set) : idx x -> set := let (X,f) := x in f.

Type X is used to index the direct elements of a set, and elts x i is the element of x with
index i. The predicativity of inductive types in sort Type implies that the sort of X is lower
than that of set so it is not possible to form the set of all sets by sup set (fun x=>x).

Most of constructions can be implemented straightforwardly: pair {x; y} can be coded by
(sup bool (fun b => if b then x else y)); union of x is a set indexed by a dependent
pair formed of an index i of x, and an index of the element of x with index i; powerset of x is
a set indexed by predicates over indexes of x, yielding the subset of x which index satisfy the
predicate.

We remark that we can define a weaker version of replacement where the relation can be
expressed as a function at the meta-level:

replf:set->(set->set)->set x ∈ replf a f ⇐⇒ ∃y ∈ a. x == f y

The set replf a f is indexed by the index set of a, and the element access function is just
the composition of f with the access function of a. We remark that all the definitions of the
previous paragraphs can be carried out with functional replacement, with the notable exception
of ordinals.

The relational replacement is more delicate. Werner resorted to a type theoretical axiom of
choice:5

Axiom choice : forall (A B:Type) (R:A->B->Prop),
(forall x:A, exists y:B, R x y) -> exists f:A->B, forall x:A, R x (f x).

This axiom can transform any relation between sets into an existentially quantified function,
than we can feed to replf. Thus, we can derive the existential version of replacement:

∀aR.R functional⇒ ∃z, ∀y, y ∈ z ⇐⇒ ∃x ∈ a,∃y′, y == y′ ∧R(x, y′)

We slightly refined Werner’s result by not requiring the excluded-middle to prove this.
In order to faithfully instantiate our IZF axiomatization, we need to Skolemize the replace-

ment axiom. We have built a functor that, given a model of IZF where constructors are exis-
tentially quantified, produces a model of IZF as in section 2.1. Sets of the skolemized signature
are predicates over sets of the input signature, that are satisfied by exactly one set.

Universes We are now trying to build a Grothendieck universe. For this we are considering
that the set of the previous paragraph represents “small sets” and we are going to duplicate
this set definition so that we can build a “big set” of all “small sets”. We relate both types of
sets by defining the copy of any small set at the big set level (which enforces that small sets live
in a universe level less than or equal to that of big sets), and finally a big set U that contains
a copy of every small set. This latter definition enforces that small sets live in a universe level
strictly below that of big sets. The following definition already reflects this constraint.

5This axiom, called Type Theoretical Description Axiom by Werner, is weaker than the set theoretical axiom
of choice since it does not imply the law of excluded-middle.
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Inductive bigset : Type := bigsup (X:Type) (f:X->bigset).
Fixpoint copy (x:set) : bigset :=
match x with
| sup X f => bigsup X (fun i => copy (f i))
end.

Definition U : bigset := bigsup set copy.

Equality and membership of small sets and their copies coincide. The next step would be to
prove that U is a Grothendieck universe. Transitivity of U , closure of U under pair, union and
powerset are straightforward. The relational replacement (repl) is also an internal operation
of U .

One might expect that we can avoid needing the choice axiom by working in IZ + replf.
Such a theory looks appealing since dependent products and λ-abstractions can be expressed
easily. Unfortunately, we failed to prove that Grothendieck universes are closed under functional
replacement: given a function that produces big sets and the logical assumption that those
big sets are indeed in U , we cannot derive a function producing small sets, which would, by
replacement at the small set level, witness that the big set built by replacement indeed belongs
to U . Quite ironically, choice seems to be the only way to fix this issue.

2.4 Related Work

There already exists several formalizations of set theory in Coq. We already mentioned Werner’s
work [13]. The focus of this work is to study relationships between set theoretical and type
theoretical formalisms. A fragment of plump ordinal theory is also formalized there.

Another related work is Simpson’s user contribution Sophia-Antipolis/FunctionsInZFC which
features an axiomatization of ZFC, and develops classical set theoretical notions.

Our present work takes from both above cited works, since it reconciles foundational inves-
tigations (like Werner’s work), and a toolbox to mechanically verify proofs in set theory (like
Simpson’s work and subsequent formalizations in algebraic geometry). The contribution of this
paper is, on the one hand, to study a bit further the encoding of Grothendieck universes (and
inaccessible cardinals) in the sets-as-trees paradigm, and on the other hand, to develop as much
as possible an intuitionistic set theoretical toolbox usable at a large scale.

3 Set theoretical model of the Calculus of Constructions

This section illustrates how these formalizations can be used to build set theoretical models of
the Calculus of Constructions.

3.1 An abstract model of CC

We define an abstract model of the Calculus of Constructions: a structure (X , ==, ∈, @, Λ,
Π, ∗), with == an equivalence relation, ∈: X → X → Prop, @ : X → X → X , and Λ,Π of type
X → (X → X )→ X , all should be morphisms. Finally, ∗ : X will be the set of the propositions
of CC. Such a structure is a model of the Calculus of Constructions if it satisfies the properties
of figure 2.

3.2 Building the model in HF

In this section, we show that we can build such a model in HF. The first three conditions of an
abstract model would suggest we can have @=app, Λ=lam and Π=dep_func, but the last one

7



(∀x ∈ A, f(x) ∈ B(x)) ⇒ Λ(A, f) ∈ Π(A,B) (Π-I)
x ∈ Π(A,B) ∧ y ∈ A ⇒ @(x, y) ∈ B(y) (Π-E)

x ∈ A ⇒ @(Λ(A, f), x) == f(x) (β)
(∀x ∈ A,B(x) ∈ ∗) ⇒ Π(A,B) ∈ ∗ (Imp)

Figure 2: Abstract model of the Calculus of Constructions

(impredicativity) cannot be satisfied. To turn around this, we use Peter Aczel’s encoding of
functions [1], that consists of encoding a function f by the set of pairs (x, y) such that y belongs
(rather than being equal) to f(x). Application is adapted so as to collect all the ys such that
(x, y) belongs to the function. This way, the empty set is the function that maps any set to the
empty set. Propositions are then either ∅ or {∅}, hence the classical and proof-irrelevant nature
of this model.

cc_lamAf := {(x, y) | x ∈ A, y ∈ f(x)}
cc_appx y := image {p ∈ x | fst p == y}

cc_prodAB := {cc_lam A (λx. app f x) | f ∈ dep_funcAB}
props := P {∅}

3.3 Building the model in IZF

The abstract model of the Calculus of Constructions can also be instantiated in IZF, using the
same definitions as in the previous paragraph. However, in IZF, the same definitions have a
totally different meaning. Propositions are not mere booleans, but form a Heyting algebra,
reflecting the meta-level propositions up to equivalence.

x ∈ props ⇐⇒ x ∈ P {∅} ⇐⇒ x = {∅ | P} for some proposition P

Thus, the model is proof-irrelevant, but not classical.

3.4 Soundness of the abstract model

Here we are going to prove that the abstract model described previously allows to actually build
an interpretation of terms and judgements of the Calculus of Constructions that will validate
the typing rules of CC. The construction is independent of the way we choose to instantiate the
abstract model (either using HF or IZF).

Our approach is to delay the introduction of the syntax as much as possible, so that our
model is “open” in the sense that we can check the validity of new constructions or typing rules
in a modular way. We will introduce the usual syntax of terms and typing rules only at the end
of this section. It is then trivial to translate the syntax into the semantics.

Instead of defining the interpretation function by recursion on the syntax of terms, we
represent terms as their interpretation function, that is a function that maps any valuation
(assigning a set to every variable) to a set.

Valuations and associated operations (dummy valuation, extension and shift) are defined as:

Definition val := nat -> X.
Definition vnil : val := fun _ => props.
Definition vcons (x:X) (i:val) : val :=
fun k => match k with 0 => x | S n => i n end.

Definition vshift (n:nat) (i:val) : val := fun k => i (n+k).
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Terms Let us remark that our abstract model gives a way to interpret all kinds (it contains
Prop and is closed by product), but it does not contain a set to interpret the sort Kind, which
is not a finite type. So we use the option type to represent terms as either Kind or a function
from valuations to sets. Since we want our interpretation to be a morphism, we get the following
definition for terms:

Definition term := option {f:val->X|Morphism (eq_val ==> eqX) f}.

Terms are viewed either as objects (and they are encoded by an element of X ), or as a
type (a set of elements of X ). The following two definitions reflect that remark (int gives
the object level interpretation, and el the type level interpretation). Observe how el encodes
that the denotation of Kind is the whole model X . The object level interpretation of Kind is a
dummy value since this sort (like any top sort of a PTS) can never appear in subject position
in judgements.

int : term→ val→ X
int (f, ) i := f i
int None i := props

el : term→ val→ X → Prop
el (f, ) i x := x ∈ f i
el None i x := True

We can define the usual term constructors (using de Bruijn notations for variables). We
leave out the proof that they are morphisms, which is straightforward.

prop := (λ .props, ) kind := None Ref n := (λi. i n, )
App u v := (λi. app (int u i) (int v i), )

Abs A M := (λi. lam (int A i) (λx. int M (vcons x i)), )
Prod A B := (λi. prod (int A i) (λx. int B (vcons x i)), )

Although we do not have introduced the syntax yet, lifting of de Bruijn variables and
substitution can be expressed as operations on the valuation:

lift : N→ term→ term
lift n (f, ) := (λi. f (vshiftn i) , )
lift n None := None

subst : term→ term→ term
subst a (f, ) := (λi. f (vcons (int a i) i) , )
subst a None := None

Environments As usual in a de Bruijn setting, environments are lists of types, and they are
deemed to denote valuations that map each variable to a value in the denotation of the type
associated to this variable.

Definition env := list term.
Definition val_ok (e:env) (i:val) := forall n T,
nth_error e n = value T -> el (lift (S n) T) i (i n).

Note that this is slightly more permissive than the typing rules, which generally rule out kind
variables (when T = Kind).

Judgements We consider two semantic judgements, that intuitively correspond to equality
and membership in the model:

• eq_typ which corresponds to convertibility. We will discuss later on why this judgement
depends on the environment.

• typ which expresses typing.

Definition eq_typ (e:env) (M M’:term) :=
forall i, val_ok e i -> int M i == int M’ i.

Definition typ (e:env) (M T:term) :=
forall i, val_ok e i -> el T i (int M i).
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Soundness of the model The goal now is to prove that our model is sound, which means
that eq_typ admits all the rules of β-conversion (congruent equivalence relation including β-
reduction). If we try to prove the admissibility of β-reduction in general, we fail because in a
set theoretical model, functions do not behave like a λ-term outside their intended domain. So
the property holds only for well-typed terms (condition eq_typ e N T below), which requires
keeping track of the environment in equality judgements:

Lemma eq_typ_beta : forall e T M M’ N N’,
T <> kind -> typ e N T ->
eq_typ (T::e) M M’ -> eq_typ e N N’ ->
eq_typ e (App (Abs T M) N) (subst N’ M’).

This also explains why it is not as easy as expected (see [10]) to build set theoretical models of
type systems which consider type convertibility as an untyped relation.

We can now prove that the semantic typing judgement admits all the rules of CC. Finally, by
remarking that the denotation of ∀P. P is the intersection of all proposition, and using the way
we instantiated props, we can show that it is empty. This proves the logical consistency of CC.
The model does not make use of ordinals or universes, so our consistency proof is axiom-free.

Syntax At this point, we may want to check that some given set of inference rules form
a consistent theory. To do so, we just have to write a recursive function that maps syntactic
terms to semantic terms (using the term constructors defined previously), prove that syntactical
lifting and substitution is equivalent to the semantic operations. A final induction allows to
prove that the typing judgements of CC (presented with a judgemental equality) imply the
semantic judgements.

As a final remark, we obtain models of the common presentation of CC (with untyped
equality) by showing the equivalence between both presentations. Adams [2] has proved this in
the case of functional PTSs. We have formalised this proof, that we will not detail here.

Conclusions Several models of the Calculus of Constructions can be found in the literature
[5, 10, 11]. We claim that this model is simpler in several respects:

• the definition of the interpretation function is straightforward and does not rely on
excluded-middle, thanks to Aczel’s trick.

• it does not consider a stratification of terms (as proof-terms, types and kinds), which do
not generalize to universes.

• it admits extensions at the Kind level by any type whose denotation is a set constructible
in IZF, since the denotation of Kind is the class of all IZF sets.

Building the model for system in judgemental equality presentation makes the soundness proof
much easier. The technical difficulties (either resorting to a stratification of terms [5], or intro-
ducing some dynamic type-checking in the β-reduction [10]) are restrained to the equivalence
proof with the untyped equality presentation.

This model also supports not so trivial extensions like Prop⊂Kind, but we shall remark that
Adams’ proof does not apply anymore since we have lost type uniqueness. So, the justification
of such extension in a presentation of the calculus with untyped conversion remains open, to
our knowledge.
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4 Model of the Calculus of Constructions with Universes (CCω)

An abstract model of the Calculus of Constructions with universes (CCω) is an abstract model
of CC, extended with a sequence (ui)i∈N that satisfies the following properties:

∗ ∈ u0 un ∈ un+1 un ⊂ un+1

A ∈ un ∧ (∀x ∈ A,B(x) ∈ un) ⇒ Π(A,B) ∈ un
A ∈ ∗ ∧ (∀x ∈ A,B(x) ∈ un) ⇒ Π(A,B) ∈ un

CCω can be proven consistent in ZF [9]. But if we want a model that can cope with
inductive types, there is little hope that we can escape without resorting to an infinite number
of inaccessible cardinals, as shown in [13]. We found it easier to reason with Grothendieck
universes, which directly gives us a set that is closed under all ZF set constructors, and thus
closed under dependent products and inductive types. It is straightforward to prove that if we
assume the existence of an infinite sequence of Grothendieck universes, the abstract model of
CCω signature can be instantiated.

The model construction follows the same steps as for CC, with the difference that CCω has
no top sort, so our interpretation domain is directly the type X .

If we do not consider cumulativity (inclusion of Typei in Typei+1), type uniqueness holds and
so does the equivalence between untyped conversion and judgemental equality, and our model
construction applies to the presentation with untyped conversion. However, adding cumulativity
breaks type uniqueness and if we cannot generalize Adams’ result, we will have to find another
equivalence proof. Normalization by evaluation techniques might help here.

5 A Model of Natural Numbers based on Size Annotation

In this section we show that a simple inductive type (Peano’s natural numbers) can fit into our
model construction. We are going to follow a very general scheme so that the method generalizes
to arbitrary inductive types. Inductive types are traditionally thought of as the least fixpoint
of a (monotonic) type transformer.

Given the inductive structure of nat, we consider the type transformer NATfX := sum UNITX
(where UNIT is {0}). Constructor ZERO is inl zero and SUCC x is inr x. We can show that
ZERO belongs to NATf X for any X, and if n belongs to X, then SUCC n belongs to NATf X.

The type of natural numbers with size annotations Termination of functions defined
by structural recursion is ensured by type-checking [7], unlike the implementation of Coq which
distinguishes the pattern-matching operator from the fixpoint operator, and uses a syntactic
criterion to check that recursive calls are made only on structurally smaller terms as described
in [6]. In [3], we proposed a variant of [7] where inductive types are annotated by size annota-
tions. Such annotation is intended to denote an ordinal over which we iterate the constructor
operator.

Using TI, we define NATi the transfinite iteration of NATf, i.e. it is the function α 7→ NATfα(∅)
for any ordinal α. At this point we do not use the fact that NATiω is a fixpoint of NATf.

Let us assume that P is a morphism and α an ordinal. Pattern-matching on a natural
number n of size bounded by α leads to either n == ZERO, or n == SUCCm for some m of size
β < α:

P (ZERO) ∧ (∀β < α.∀m ∈ NATiβ.P (SUCCm)) ⇒ ∀n ∈ NATiα.P (n)

Replacement can be used to turn this specification into a set that is the denotation of a pattern-
matching constant. Constructor discrimination and injection is needed to show that the output
of pattern-matching (constructor case and arguments) is uniquely specified.
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The fixpoint associated to natural numbers of size bounded by α can be expressed without
any reference to the constructors:

(∀β ≤ α.(∀γ < β.∀m ∈ NATi γ.P (m))⇒ (∀n ∈ NATiβ.P (n))) ⇒ ∀n ∈ NATiα.P (n)

If we omit the ordinal annotations, this specification looks like a fixpoint operator of type
((nat → P ) → (nat → P ) → nat → P . Of course, ordinals are the guarantee that recursion
terminates. The subtle relation between three sizes

• α the size of initial call to the recursive function,

• β(≤ α) the typical size of the input along the recursive calls

• and γ(< β) the maximum size on which recursive calls are allowed

is a (yet somewhat informal) justification of the typing rules of fixpoints based on size annota-
tion, as in [3].

Building the fixpoint We define NAT as NATiω. In order to show that NAT is a fixpoint of
NATf, we prove that sum is continuous: for any I (Xi)i∈I and (Yi)i∈I ,

sum
⋃
{Xi | i ∈ I}

⋃
{Yi | i ∈ I} ==

⋃
{sum Xi Yi | i ∈ I}

So, NATf NAT ==
⋃
{NATf (NATi n+) | n < ω} ==

⋃
{NATi n++ | n < ω} == NAT. From this

fixpoint equation, it is straightforward to derive the usual eliminator on natural numbers:

P (ZERO) ∧ (∀m ∈ NAT.P (SUCCm)) ⇒ ∀n ∈ NAT.P (n)

6 Conclusion and Future work

This article shows that formal semantics of expressive type theories are not out of reach anymore.
We claim this, although there is a gap between informal and formal semantics that is often
overlooked by authors.

This work can be followed in several directions:

• formalizing general inductive types: this requires more support for transfinite recursion
and a characterization of the ordinal that makes all positive inductive definitions reach
their fixpoint. Such an ordinal can be related to the cardinal of the universe in which
the inductive definition lives in. Since a large piece of cardinal theory rely on the (set
theoretical) axiom of choice, we might have to axiomatize ZFC.

• studying other models: set theoretical models are good to give an explanation of CIC that
is compatible with the intuition of mathematicians; however in a programming language
setting, models based on Scott domains are more pertinent; also, it would be interesting
to look at how our models (designed initially to prove consistency) can be turned into
strong normalization models.
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Abstract

We present a Coq reflexive tactic for deciding equalities or inequalities in Kleene algebras.
This tactic is part of a larger project, whose aim is to provide tools for reasoning about binary
relations in Coq: binary relations form a Kleene algebra, where the star operation is the
reflexive transitive closure. Our tactic relies on an initiality theorem, whose proof goes by
replaying finite automata algorithms in an algebraic way, using matrices.

Motivations

Proof assistants like Coq make it possible to leave technical or administrative details to the
computer, by defining high-level tactics. For example, one can define tactics in order to solve
decidable problems automatically (e.g., omega for Presburger arithmetic and ring for ring equal-
ities). Here we present a tactic for solving equations and inequalities in Kleene algebras. This
corresponds to a broader goal: providing tools (tactics) for working with binary relations. In-
deed, Kleene algebras correspond to a non-trivial decidable fragment of binary relations. In the
long term, we plan to use these tools for formalising process algebras and concurrency theory
results: binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract rewriting
(e.g., Newman’s Lemma, equivalence between weak confluence and the Church-Rosser prop-
erty, termination theorems based on commutation properties) are best presented using informal
“diagram chasing arguments”. This is illustrated by Fig. 1, where the same state of a typical
proof is represented three times. Informal diagrams are drawn on the left. The goal listed
in the middle corresponds to a naive formalisation where the points related by relations are
mentioned explicitly. This is not satisfactory: a lot of variables have to be introduced, the goal
is displayed in a rather verbose way, the user has to draw the intuitive diagrams on its own
paper sheet. On the contrary, if we move to an algebraic setting (the right-hand side goal),
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''OOOOOO

H·
R 77oooooo

S? ''
·

· R?

77

· S?

''OOOOOO ·
·

R 77oooooo

S? ''
·

R? 77oooooo

? R?

GG

R,S: relation P

H: ∀ p,r,q, R p r → S? r q

→ ∃ s, S? p s & R? s q

p,q,q’,s: P

Hpq: R p q

Hqs: S? q s

Hsq ’: R? s q’

===========================

∃ s: P, S? p s & R? s q’

R,S: X

H: R · S? ⊆ S? · R?

=================

R · (S? · R? ) ⊆ S? · R?

Figure 1: Diagrammatic, concrete, and abstract presentations of the same state in a proof.

∗Work partially funded by the French ANR projet blanc “Curry-Howard pour la Concurrence” CHOCO
ANR-07-BLAN-0324

1



where binary relations are seen as abstract objects, that can be composed using various oper-
ators (e.g., union, intersection, relational composition, iteration), statements and Coq’s output
become rather compact, making the current goal easier to read and to reason about.

Some technology is then required to avoid handling some administrative steps explicitly,
which were somehow hidden in concrete proofs contexts. For example, in the right-hand side
proof state of Fig. 1, we first need to re-arrange parentheses in order to be able to rewrite
the goal using hypothesis H. This drawback is eliminated by defining adequate tactics to work
modulo associativity and commutativity.

More importantly, moving to the abstract setting allows us to implement several decision
procedures that could hardly be stated with the concrete presentation. For example, once we
rewrite H in the right-hand side goal of Fig. 1, we obtain the inclusion S?·R?·R?⊆S?·R? which is
a (straightforward) theorem of Kleene algebras: it can be proved automatically thanks to the
tactic we describe in this paper.

Outline. We recall the required mathematical background and we sketch the structure of the
tactic in Sect. 1. We give some details about the underlying design choices in Sect. 2. Sect. 3
focuses on the algebraic part of the correctness proof, and the implemented algorithms are
described in Sect 4. We conclude with directions for future work in Sect. 5.

1 Deciding equalities in Kleene algebras

Theoretical background. A Kleene algebra [22] is a tuple 〈X, ·,+, 1, 0, ?〉, where 〈X, ·,+, 1, 0〉
is an idempotent non-commutative semiring, and ? is a unary operation on X, satisfying the
following axiom and inference rules (where ≤ is the preorder defined by x ≤ y , x+ y = y):

1 + a · a? ≤ a? a · x ≤ x
a? · x ≤ x

x · a ≤ x
x · a? ≤ x

Models of Kleene algebras include regular languages, where the star operation is language iter-
ation; and binary relations, where the product (·) is relational composition, and star is reflexive
and transitive closure (in this model, the above rules basically state that a? is the least reflexive
element which is stable under composition with a).

Thanks to finite automata theory (among others, Kleene [21], Rabin & Scott [29], Nerode [28]),
equality of regular languages is decidable:

“two regular expressions denote the same regular language if and only if the corre-
sponding minimal automata are isomorphic”,

and minimal automata can be computed as follows: 1) construct a non-deterministic finite au-
tomaton with epsilon-transitions (ε-NFA), by structural induction on the regular expression; 2)
remove epsilon-transitions to obtain a non-deterministic finite automaton (NFA), by computing
the closure of epsilon-transitions; 3) determinise the automaton using the accessible subsets con-
struction, to obtain a deterministic finite automaton (DFA); 4) minimise the DFA by merging
all states that are equivalent according to Myhill-Nerode’s relation.

However, the above theorem is not sufficient to decide equality in all Kleene algebras: it only
applies to the regular languages model. We actually need a more recent theorem, by Kozen [22]
(also independently proved by Krob [24]):

“if two regular expressions α and β denote the same regular language, then α = β
can be proved in any Kleene algebra”.
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In other words, the algebra of regular languages is initial among Kleene algebras: we can use
the above decision procedure to solve equations in an arbitrary Kleene algebra A. The main
idea of Kozen’s proof is to encode automata using matrices over A, and to replay automaton
algorithms at this algebraic level. Indeed, a finite automaton with transitions labelled by the
elements of A can be represented with three matrices (u,M, v) ∈ M1,n ×Mn,n ×Mn,1: n is
the number of states of the automaton; u and v are 0-1 vectors respectively coding for the sets
of initial and accepting states; and M is the transition matrix: Mi,j is non-empty if there is a
transition from state i to state j. This corresponds to the definition of an ε-NFA; definitions of
NFAs and DFAs can easily be recovered by adding conditions on matrices u and M .

We remark that the product u ·M · v is a scalar, which can be thought of as the set of
one-letter words accepted by the automaton. Therefore, in order to mimic the actual behaviour
of a finite automaton, we just need to iterate over the matrix M . This is possible thanks to
another theorem, which actually is the crux of the initiality theorem: “square matrices over
a Kleene algebra form a Kleene algebra”. We hence have a star operation on matrices, and
we can interpret an automaton algebraically, by considering the product u · M? · v. In the
regular languages model, this expression actually corresponds to the language recognised by the
automaton. We give more details about this proof in Sect. 3.

Overview of our strategy. We define a reflexive tactic. This methodology is quite standard:
it is described in [2] and it was used by Grégoire and Mahboubi to obtain the current ring

tactic [15]. Concretely, this means that we implement the decision as a Coq program (Sect. 4),
so as to be able to prove its correctness within the proof assistant (Sect. 3):
Definition decide_Kleene: regexp → regexp → bool := ...

Theorem Kozen: ∀ a,b: regexp , decide_Kleene a b = true → a =̇ b.

The above statement corresponds to Kozen’s theorem in the special case of the “free Kleene
algebra”: regexp is the obvious inductive type for regular expressions over a given set of vari-
ables, and =̇ is the inductive equality generated by the axioms of Kleene algebras. Using Coq’s
reification mechanism, this is sufficient for our needs: the result can be lifted to other models
using simple tactics (we return to this point in Sect. 2.3).

The equational theory of Kleene algebras is PSPACE-complete [25, 26]. Indeed, the deter-
minisation phase of the algorithm we sketched above can produce automata of exponential size.
Although this is not the case on the typical examples we tried, where our tactic runs almost
instantaneously, this means that the decide Kleene function must be written with some care,
using efficient out-of-the-shelf automaton algorithms. Notably, the matricial representation of
automata is not efficient for all stages of the decision procedure. Therefore, we need to work
with other data-structures for automata, and to write the corresponding translation functions
in order to reason about the algorithms in the uniform setting of matricial automata. We detail
and justify our choices about these algorithms and data structures in Sect. 4.

2 Underlying design choices

Before going through Kozen’s proof (Sect. 3) and giving details about our implementation of
the decision procedure (Sect. 4), we explain the main choices we made about the structure of
our development: how to represent the algebraic hierarchy, how to represent matrices, how to
manage matrix dimensions, and how to resort to syntactical objects using reification.
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2.1 Algebraic hierarchy

The mathematical definition of a Kleene algebra is incremental: it is a non-commutative semir-
ing, which is itself composed of a monoid and a semi-lattice. Moreover, proofs naturally follow
this hierarchy: when proving results about semirings, one usually rely on results about both
monoids and semi-lattices. In order to structure our development in a similar way, we defined
the algebraic hierarchy using Coq’s recent typeclasses mechanism [30]: we defined several classes,
corresponding to the different algebraic structures, so as to obtain the following “sub-typing”
relations (these relations are projections, declared as morphisms to the typeclass system):

SemiLattice <:
Monoid <:

SemiRing <: KleeneAlgebra <: ...

The other possibilities were to use canonical structures or modules. We tried the latter one;
it was however quite difficult to organise modules, signatures and functors so as to obtain the
desired level of sharing between the various proofs. In particular, when we consider more com-
plex algebraic structures, we can no longer work with syntactical sub-typing between structures
(we only have functors from one structure to another) and we lose the ability to directly use
theorems, definitions, and tactics from lower structures in higher structures.

Except for some limitations due to the novelty of this feature, typeclasses happen to be much
easier to use for our purposes: sharing is obtained in a straightforward way, the code does not
need to be written in a monolithic way (as opposed to using functors), and it brings nice solutions
for overloading notations (e.g., we can use the same infix symbol for multiplication in a monoid,
a semiring, or a matrix semiring). We currently try to compare our strategy with that from [14,
5, 13], which is based on canonical structures. Although the aims of canonical structures and
typeclasses are quite close, the underlying mechanisms lead to different constraints.

2.2 Matrices

Coq definition. A matrix can be seen as a partial map from pairs of integers to a given type
X, so that a Coq definition of matrices and the sum operation could be the following:
Definition MX (n m: nat) := ∀ i j, i<m → j<n → X.

Definition plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<n) := M i j Hi Hj + N i j Hi Hj.

This corresponds to the dependent types approach: a matrix is a map to X from two integers
and two proofs that these integers are lower than the bounds of the matrix. Except that
they use vectors, this is the approach followed by [5, 13] and [6]. With such a representation,
every access to a matrix element must be made by exhibiting two proofs, ensuring that the
indices lie within the bounds. For simple operations like the above plus function this is not
so problematic, this however requires more boilerplate when writing more complex operations
like matrix multiplication or block decomposition operations. We actually chose to move these
bounds checks to equality proofs only, by working with the following definitions:
Definition MX n m := nat → nat → X.

Definition equal n m (M N: MX n m) := ∀ i j, i<n → j<m → M i j == N i j.

Fixpoint sum i k (f: nat → X A B) := match k with O ⇒ 0 | S k ⇒ f i + sum (S i) k f end.

Definition dot n m p (A: MX n m) (B: MX m p) := fun i j ⇒ sum O m (fun k ⇒ M i k · N k j).

Here, a matrix is an infinite function from pairs of integers to X, and equality is restricted to
the domain of the matrix. With these definitions, we do not need to manipulate proofs when
defining matrix operations (like the above dot function), so that these definitions are both easier
to write and more efficient to compute with. Bounds checks are required a posteriori only, when
proving properties about these matrices operations, e.g., associativity of the product. This is
easy in most cases: these proofs are done within the interactive proof mode, and can often be
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solved with high level tactics like omega. We have not yet found drawbacks to this approach,
we do not know whether it scales to more intensive usages like linear algebra [13].

Phantom types. Unfortunately, these definitions allow one to type the following code, where
the three additional arguments of dot are implicit:
Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

This definition is accepted by Coq because of the conversion rule: since MX n m is a dependent
type that does not mention n nor m in its body, these type informations can be discarded by the
Coq type system, using the conversion rule (MX n 16 = MX 64 p). This is not so terrible: such
an ill-formed definition will be detected at proof-time. It is however a bit sad not to benefit
from the advantages of a strongly typed programming language here. We partially solved this
problem by resorting to an inductive singleton definition, reifying bounds in phantom types:
Inductive MX (n m: nat) := box: (nat → nat → X) → MX n m.

Definition get (n m: nat) (M: MX n m) := match f with box f ⇒ f end.

Definition plus (n m: nat) (M N: MX n m) := box n m (fun i j ⇒ get M i j + get N i j).

Coq no longer equates types MX n 16 and MX 64 p with this definition, so that the above ill dot

function is rejected, and we can trust inferred implicit arguments (e.g., the m argument of dot).
However, we need to artificially introduce the box at each matrix construction – get can be
declared as a coercion. We still look for a better solution to this problem.

Computation. From a computational point of view, using lazy functions as a representation
for matrices is two-edged : on the one hand, if the resulting matrix of a computation is seldom
used, then computing the result point-wise, by need, is efficient; on the other hand, making
numerous accesses to the same expensive computation may be a burden. Therefore, we have
defined a memoisation operator that computes every point of a matrix, store the result in an
associative map, and returns a function (of the same type) that accesses the associative map
instead of recomputing the result. Since this memoisation operator can be proved to be an
identity, it can be inserted in our code in a transparent way, at judicious places.
Lemma mx_force_id : ∀ n m (M : MX n m), mx_force M == M.

2.3 Graded algebras, typed reification

Adding types. Square matrices over a semiring form a semiring, and Kozen needed the
extension of this folklore result to Kleene algebras [22]. For rectangular matrices, the various
operations are only partial: dimensions have to agree. Therefore, with naive definitions of the
algebraic structures, we are unable to use theorems and tools developed for monoids, semi-
lattices, and semirings to reason about rectangular matrices. To remedy this problem, we

X: Type.

dot: X → X → X.

one: X.

plus: X → X → X.

zero: X.

star: X → X.

dot_neutral_left:

∀ x, dot one x = x.

...

T: Type.

X: T → T → Type.

dot: ∀ n m p, X n m → X m p → X n p.

one: ∀ n, X n n.

plus: ∀ n m, X n m → X n m → X n m.

zero: ∀ n m, X n m.

star: ∀ n, X n n → X n n.

dot_neutral_left:

∀ n m (x: X n m), dot one x = x.

...

Figure 2: From Kleene algebras to typed Kleene algebras.
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generalised algebraic structures from the beginning, using types, which corresponds to working
with graded algebras. An example is given in Fig. 2: a typical signature for semirings is
presented on the left-hand side; we moved to the signature on the right-hand side, where a set
T of types (or indexes) is used to constrain the various operations. These types can be thought
of as matrix dimensions; we can also remark that we actually moved to a categorical setting: T

is a set of objects, X n m is the set of morphisms from n to m, one is the set of identities, and
dot is composition. As expected, with such definitions, one can form arbitrary matrices over a
typed structure, and obtain another instance of this typed structure:
Instance mx_SemiRing: SemiRing → SemiRing := ...

Instance mx_KleeneAlgebra: KleeneAlgebra → KleeneAlgebra := ...

(The above code relies on our use of maximally inserted implicit arguments for the carrier and
operations of the algebraic structures.) Then, thanks to typeclasses, we inherit all theorems,
tactics, and notations we defined on generic structures, at the matricial level. Notably, when
defining the star operation on matrices over a Kleene algebra, we can benefit from all tools for
semirings, monoids, and semi-lattices, at the matricial level. This is quite important since this
construction is rather complicated.

Removing types. Typed structures not only make it easier to work with matrices, they
also give rise to a wider range of models. In particular, we can consider heterogeneous binary
relations (between two distinct sets), rather than binary relations on a fixed set. This leads to
the following question: can the usual decision procedures (for semi-lattices, semirings, and the
one presented here for Kleene algebras) be extended to this more general setting?

Consider for example the equation a · (b · a)? = (a · b)? · a, which is a theorem of typed
Kleene algebras as soon as a and b are respectively given types n → m and m → n, for some
n,m; how to make sure that the proof obtained by computing minimal (untyped) automata
and concluding using Kozen initiality theorem is actually a valid, well-typed, proof?

For efficiency and practicability reasons, re-defining our decision procedures to work with
typed objects is not an option (they are written as reflexive tactics). Instead, we managed to
prove the following theorem, which allows one to erase types, i.e., to transform a typed equality
goal into an untyped one:

TΣ ` u = v Γ ` uB α : n→ m Γ ` v B β : n→ m

A ` α = β : n→ m
(∗)

Here, Γ ` u B α : n → m reads “under the evaluation and typing context Γ, the untyped
term u can be evaluated to α, of type n → m”; this predicate can be defined inductively in a
straightforward way, for various algebraic structures. The theorem can then be rephrased as
follows: “given an untyped equality proof of u and v, and typed interpretations α and β for
u and v, we can construct a typed proof of α = β”. We proved it for semi-lattices, monoids,
semirings, and Kleene algebras, so that all of our decision tactics apply to the typed setting
– and in particular, to matrices. While this theorem is trivial for semi-lattices, and rather
simple for monoids, difficulties arise with semirings and Kleene algebras, due to the presence
of annihilator elements. Also note that Kozen investigated a similar question [23] and came up
with a slightly different solution: he solves the case of the Horn theory rather than equational
theory, at the cost of working in a restrained form of Kleene algebras. He moreover relies on
model-theoretic arguments, while our considerations are purely proof-theoretic.

Typed reification. The above discussion about types raises another issue: reflexive tactics
need to work with syntactical objects. For example, in order to construct an automaton, we
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Automata construction

(a+ b)?

��

α

A

β

A

a∗ · (b · a∗)∗

����

Removal of ε-transitions

• ///o/o/o/o/o/o

��

u′ ·M ′? · v′

A

s′ ·N ′? · t′

A

•oo o/ o/ o/ o/ o/ o/ o/

��

Determinisation

• ///o/o/o/o/o/o/o

��

u ·M? · v

A

s ·N? · t

A

•oo o/ o/ o/ o/ o/ o/ o/ o/

��

Minimisation

• ///o/o/o/o/o

��

〈u〉 · 〈M〉? · 〈v〉

A

〈s〉 · 〈N〉? · 〈t〉

A

•oo o/ o/ o/ o/ o/ o/

��
• ///o/o/o/o/o 〈̂u〉 · 〈̂M〉

?
· 〈̂v〉 A 〈̂s〉 · 〈̂N〉

?
· 〈̂t〉 •oo o/ o/ o/ o/ o/ o/

Figure 3: Soundness of decide Kleene.

need to proceed by structural induction on the given expression. This step is commonly achieved
by moving to the free algebra of terms, and resorting to Coq’s reification mechanism (quote).
However, this mechanism does not handle typed structures, so that we needed to re-implement
it. Since we do not have binders, we were able do this within Ltac: it suffices to eapply

theorem (∗) to the current goal, so that we are left with three goals, with holes for u, v and
Γ; then by using an adequate representation for Γ, and by exploiting the very simple form of
the typing and evaluation predicate, we are able to progressively fill these holes and to close
the two goals about evaluation by repeatedly applying constructors and ad-hoc lemmas about
environments. Unlike Coq’s standard quote, which works by conversion and has no impact on
the size of the current proof, this “lightweight”-quote generates rather large proof-terms. We
would like to understand whether this situation can be improved, still remaining within Ltac.

3 Kozen’s proof

The tactic we describe here relies on Kozen’s initiality theorem: to prove that an equality
α = β holds in any Kleene algebra, it suffices to check that the underlying minimal automata
are isomorphic. The overall structure of Kozen’s proof is depicted on Fig. 3: bullets represent
idealised standard automaton constructions; the proof consists in showing that each construction
can be related to a matricial automaton, whose interpretation is provably equal to the initial
expression; we finally conclude by transitivity, if the minimal automata coincide. We briefly
sketch the inner steps of this proof, i.e., the algebraic part, letting the reader refer to [22] for
more details. The algorithms corresponding to the outer arrows are described in Sect. 4.

Building automata. There are several ways of constructing an ε-NFA from a regular expres-
sion [33]. We chose Thompson’s construction [32] because of its simplicity: as described in [22],
this is only a matter of block matrix constructions, and we easily show that the ε-NFA built
from α evaluates to α, using algebraic laws. For example, the automaton for a sum is defined,
and proved correct, as follows; the other constructions are obtained in a very similar way.

[
u s

]
·
[
M 0
0 N

]?

·
[
v

t

]
=
[
u s

]
·
[
M? 0
0 N?

]
·
[
v

t

]
= · · · = u ·M? · v + s ·N? · t
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While these constructions are rather simple, they heavily rely on block matrix properties. The
fact that we do not use dependent types to represent matrices greatly helps here.

Removing ε-transitions. The automata obtained with Thompson’s construction may con-
tain ε-transitions: their transitions matrices can be written as M = J +

∑
a∈Σ a · Na, where

J and the Na are 0-1 matrices, and J corresponds to the graph of ε-transitions. Removing
these transitions to obtain an NFA usually means computing their reflexive and transitive clo-
sure, to update the other transitions. This can be done algebraically: thanks to the identity
(a+b)? = a? ·(b · a?)? (a theorem of Kleene algebras), we have u·(J+N)? ·v = u·J? · (N · J?)? ·v,
and the automaton on the right (u · J?, N · J?, v) no longer contains ε-transitions. Indeed, J?

corresponds to the reflexive transitive closure of J .

Determinisation. The determinisation algorithm we implemented builds a DFA whose states
are sets of states from the initial NFA; it consists in enumerating the set of subsets of states
that are accessible from the set of initial states. Starting from a NFA (u,M, v) with n states,
this algorithm returns a DFA (〈u〉, 〈M〉, 〈v〉) with 〈n〉 states, together with a map ρ from [1..〈n〉]
to the subsets of [1..n]. We sketch the algebraic part of the correctness proof. By letting X
denote the (〈n〉, n) 0-1 matrix defined by Xsj , j ∈ ρ(s), we prove that the returned automaton
satisfies the following commutation properties:

〈M〉 ·X = X ·M (1) 〈u〉 ·X = u (2) 〈v〉 = v ·X (3)

The intuition behind X is that this is a “decoding” matrix: it sends the characteristic vectors
of states of the DFA to the characteristic vectors of the corresponding subset of states from
the NFA. Therefore, (1) can be read as follows: executing a transition in the DFA and then
decoding the result amounts to decoding the given state and executing parallel transitions in
the NFA. Similarly, (2) states that the initial state of the DFA corresponds to the set of initial
states of the NFA. From (1), we can deduce 〈M〉? · X = X ·M? using a theorem of Kleene
algebras, and we can conclude with (2, 3): the two automata evaluate to the same value:

〈u〉 · 〈M〉? · 〈v〉 = 〈u〉 · 〈M〉? ·X · v = 〈u〉 ·X ·M? · v = u ·M? · v .

Minimisation. The algebraic part of the correctness proof for minimisation is similar to that
for determinisation. Starting from a DFA (u,M, v), the algorithm computes a partition of
states, such that equivalence classes are stable under transitions and refine the partition of
states between final and non-final. This partition is computed using Hopcroft’s minimisation
algorithm, which is described in Sect. 4; it is then converted into a map [.] sending each state
of the given DFA to the canonical representant of its equivalence class. This map allows us to
define a decoding matrix Y by letting Yij , [i] = j, and the minimised automaton (û, M̂ , v̂) is
defined by:

M̂ , Y > ·M · Y û , u · Y v̂ , Y > · v .

We finally prove that Y · M̂ = M · Y and Y · v̂ = v (the first equality means that merging
equivalence classes and then computing transitions in the minimised automaton amounts to
computing transitions in the initial automaton and then merging the resulting states). As
previously, this yields û · (M̂)? · v̂ = u ·M? · v : the automata are equivalent.
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(a+ b)?

��

α

AThompson’s Construction
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��

u′ ·M ′? · v′
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(u,M, v)
��

u ·M? · v

A
State→ StateSet
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��
Determinisation

State→ State ///o/o/o/o

��

〈u〉 · 〈M〉? · 〈v〉

AMinimisation

State→ State ///o/o/o/o 〈̂u〉 · 〈̂M〉
?
· 〈̂v〉

Figure 4: Proof and code relationship.

4 Implementing the decision procedure

We now focus on the external part of Fig. 3, that is, the algorithmic details of our imple-
mentation. As explained in the introduction, the equational theory of Kleene algebras being
PSPACE-complete, we have to care about efficiency. This drives our choices about both data-
structures and algorithms: accessible subset construction for determinisation, and Hopcroft’s
minimisation algorithm [1].

Boolean matrices. One cannot work with matrices over the free Kleene algebra: there are
many terms that will never appear in automata matrices (like (a+ 1)?), and we would need to
reason modulo the axioms of Kleene algebras, that equate, e.g., 1 + a and 0? + (1 + 0 · b) · a.
Since Thompson’s construction yields automata whose transition matrix can be written as
M = J +

∑
a∈Σ a · Na, where J and the Na are 0-1 matrices, it actually suffices to work

with matrices built upon the Kleene algebra of booleans: 〈bool,andb,orb,true, false ,fun ⇒true〉.
Then, in proofs, we inject these matrices into those built upon the free Kleene algebra (e.g., for
evaluating automata formally). This allows us to write optimised functions for boolean matrices:
there are only two values to consider and we can exploit laziness. In particular, removing ε-
transitions can be done easily and efficiently with this representation of automata: as showed
in Sect. 3, it suffices to compute the star of a boolean matrix (J?), and some multiplications
(u · J? and the Na · J?).

FSets. The matricial representation of automata is no longer adequate when it comes to
determinisation and minimisation. Therefore, starting from the ε-free NFA we built, we convert
our matrices to more convenient representations, like transition functions. As can be seen on
Fig. 4, we start with non-deterministic transition functions that map states to sets of states,
and we later use deterministic transition functions that map states to states. To build efficiently
these functions, we use the finite sets and finite maps libraries of Coq to represent state sets,
partitions of states, and so on. . . These libraries being rather complete, this also gives us proper
tools for proving the correction of our algorithms, and linking these structures to the matricial
representation of automata (the horizontal arrows from Figs. 3 and 4).
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! a : label

! i : state

! p,q,pt ,pf : fset state

! P : fset (fset state)

! L : fset (label * fset state)

Variables states , finaux: fset state.

Variable labels: fset label.

Variable delta: state → label → state.

Definition delta_inv:

fset state → label → fset state := ....

Definition splittable p a q :=

let inv := delta_inv a q in

let (pt ,pf) := partition (fun i ⇒ i ∈ inv) p

in if is_empty pt || is_empty pf

then None

else Some (pt,pf).

Definition update_splitters p pf pt L :=

fold (fun a L ⇒ if (a,p) ∈ L

then {(a,pf),(a,pt)} ∪ L\(a,p)

else if cardinal pf < cardinal pt

then {(a,pf)} ∪ L

else {(a,pt)} ∪ L

) labels L.

Definition split P L (a,q) :=

fold (fun p acc ⇒
match splittable p a q with

| None ⇒ acc

| Some (pf ,pt) ⇒
let (P,L) := acc in

({pf, pt} ∪ P\p,

update_splitters p pf pt L))

end

) P (P,L).

Function loop P L {wf RPL (P,L)} :=

match choose L with

| None ⇒ P

| Some x ⇒ loop (split P (L\x) x)

end.

Definition partition :=

loop

{finals , states\finals}

(labels × {finals }).

Figure 5: Coq code for minimisation.

Determinisation. Determinisation is exponential in worst case: this is a power-set construc-
tion. However, examples where this bound is reached are rather contrived, and the practical
complexity is much better: most subsets of states cannot be reached from the subset of initial
states. It is therefore crucial to implement the accessible subset construction, so as to avoid
useless computations. We only give a very high level view of our implementation here: the
standard algorithm is basically a while loop; that we translate into a tail-recursive fix-point;
termination is not structural: it requires us to compute the exponential worst case bound, and
we use a standard trick in order to avoid this useless and problematic computation. The proof
of the algorithm requires us to find the adequate invariant for the loop; due to tail-recursion,
this rather large invariant cannot be defined progressively with Coq’s help: it has to be defined
by hand, in a monolithic way.

Minimisation. We have to compute the Myhill-Nerode equivalence relation, which equates
states sharing the same behaviour, i.e., accepting the same the language. The Coq implementa-
tion of Hopcroft’s algorithm [17, 1] is sketched in Fig. 5: it consists in a ‘while’ loop containing
two nested ‘for’ loops, translated using the fold operation of finite sets. The termination of
the external loop is ensured using a well-founded relation (the algorithm could be rewritten so
as to use structural recursion only, we found the resulting code less clear and harder to prove,
however).

The idea of the algorithm is to start from an initial partition of states (final and non final
states), and to refine this partition whenever one of its elements is splittable: i.e., when a
move from a set of state can lead to two different sets by a transition with a given label a. The
implementation of this predicate is made efficient by precomputing the inverse transition graph
(delta inv). Hopcroft then uses a set L of splitters, i.e., pairs (label, state set) w.r.t. which
one must attempt to split classes of the partition. The crux of the algorithm is to keep from
adding too much redundancy in L: if a pair (a,q) is not in this set, then either every class of
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the partition is already split w.r.t. (a,q), or L contains enough pairs to subsume (a,q).
Treading through L in the main loop function, we dismiss the pairs (a,q) that do not split

equivalence classes, and we update our partition P and the set L when (a,q) splits an equivalence
class p into pf and pt. The update of potential splitters in L is based on the following remark:
when p is split into pf, pt, then, for any label a, it suffices to split every other class q w.r.t.
any two of (a,p), (a,pf), and (a,pt). If (a,p)∈ L, we must add both sub-splitters; if (p,a) /∈ L,
then L subsumes (p,a) and it suffices to add the smallest of (a,pf) and (a,pt) to L1.At the end
of the algorithm, since L is empty, we know that the equivalence classes of P cannot be split
anymore: P is the Myhill-Nerode equivalence relation.

Avoiding automata isomorphism. The languages denoted by two regular expressions are
equal if and only if their respective minimised automata are equal up-to isomorphism. By
exploring all state permutations, this is sufficient to obtain decidability of regular languages
equality. One can do a little better, however: it is not necessary to look for such a permutation.
Suppose that languages α and β are represented by two DFAs; minimise the automaton whose
set of states is the union of the states of the DFAs (i.e., the sum automaton), and test if the
initial states of the two original DFAs are merged: these states are equivalent if and only if the
DFAs recognise the same language, i.e., α = β. This ends our description of the algorithm.

5 Conclusions and directions for future work

We presented a reflexive tactic for deciding Kleene algebra equalities. This tactic belongs to
a broader project whose aim is to provide algebraic tools for working with binary relations in
Coq; the development can be downloaded from [8]. To our knowledge, this is the first efficient
implementation of these algorithms in Coq, and their integration into a generic tactic.

At the time we started this project, Briais formalised decidability of regular languages
equalities [9] (but not Kozen’s initiality theorem), without taking care about efficiency: deter-
minisation is always exponential; instead of minimising automata, he relies on the ‘pumping
lemma’ to enumerate the finite set of accepted ‘small enough’ words. As a consequence, even
straightforward identities cannot be checked by letting Coq compute. These preliminary results
lead us to restart from scratch and to look for a better strategy.

Narboux defined a set of tactics for formalising diagrammatic proofs in Coq [27]. He works
in the concrete setting of binary relations, which makes it possible to represent more diagrams,
but does not scale to other models. The level of automation is rather low: it basically reduces
to a set of hints for the auto tactic.

Höfner and Struth used the automated first-order theorem prover Prover9 to automati-
cally verify facts about boolean and relation algebras [18]. While these algebras feature the
intersection and complementation operators (hence imposing a classical setting), they do not
contain the Kleene star operation. Our approaches are quite different: while we implemented
a decision procedure, their proposal is based on heuristics and learning techniques, within a
resolution/paramodulation based framework.

We conclude this paper with directions for future work.

Optimisations. Even if our tactic works almost instantaneously on simple examples, such as
the ones appearing in typical algebraic proofs, there is room for optimisation.

1The latter optimisation happened to be rather difficult to prove correct, so that we deactivated it our first
release: the inner ‘if’ statement in the update splitters function is replaced by (a,pf)∪(a,pt)∪L

11



• We use unary integers to represent states; this is a drawback when we memoise matrices
or make comparisons of state sets. A first step would be to move to Coq’s binary nat-
ural numbers (N); we plan to resort eventually to either n-ary integers [16], or machine
integers [31].

• Although the algorithms we implemented for determinisation and minimisation are rather
optimal, this is not the case for our construction algorithm (Thompson’s one): we could
use other algorithms [4, 10, 19], that produce smaller automata. Indeed, the complexity
of the determinisation stage being potentially exponential in the size of the starting NFA,
producing smaller automata from the beginning would improve the overall complexity.

• We have to implement a better algorithm for elimination of ε-transitions, which seems
to be the current bottleneck of our tactic. This problem could also be solved by directly
constructing ε-free automata, like Glushkov’s one, or implement a construction like the
one proposed in [19], which results in automata that do not contain cycles of ε-transitions
– yielding to faster transitive closure algorithms.

Richer algebras. Kleene algebras lack several important operations from binary relations:
intersection, converse, complement, residuals. . . We would like to develop tools for the corre-
sponding algebras:

• Kleene algebras with converse should be decidable: since the converse operation commutes
with all operations, we can imagine to push converses to the leafs of the terms, before
applying our tactic for Kleene algebras.

• Residuated semirings [20], i.e., semirings with residual operations are decidable thanks to
a Gentzen proof system having the sub-formula property. We plan to implement proof
search for this proof system, either directly in Ltac, or using an external program to
produce a trace that would then be reinterpreted as a Coq proof.

• Allegories [12] or relation algebras have an undecidable equational theory; they however
provide means of encoding properties like well-foundedness [11], so that it would be inter-
esting to provide tools for these structures (e.g., for solving decidable fragments).

Rewriting modulo A/AC. As explained in the introduction, some technology is required
in order to work implicitly modulo associativity (A) and/or commutativity (C). For example,
in the contexts below, we would like to rewrite the goal using hypothesis H without having to
manually rearrange the goal first.

R,S,U,V: X

H: U · V = R

===========

(U · U) · V = S

R,S,U,V: X

H: U+V = R

==========

V+S+U = S

R,S,U,V: X

H: ∀ T, T · (T+U+V) = T

=====================

(U · R) · (V+R+U) = S

For this development, we wrote ad-hoc tactics ac rewrite and monoid rewrite that work in
simple cases like the first two examples. However, a more systematic approach is required in
order to handle situations like the third one. We plan to pursue Beauquier’s work on this
topic [3]: we would like to implement algorithms for matching modulo A and AC [7], and to
integrate the resulting (external) program with Coq, in order to obtain more satisfying tools
for rewriting modulo A and AC.
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[31] A. Spiwack. Ajouter des entiers machine à Coq. http://arnaud.spiwack.free.fr/papers/nativint.pdf, 2006.

[32] K. Thompson. Regular expression search algorithm. Communications of the ACM, 11:419–422, 1968.
[33] B. W. Watson. A taxonomy of finite automata construction algorithms. Technical report, Computing Science, 1993.

13

http://sardes.inrialpes.fr/~braibant/atwbr/
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz
http://arnaud.spiwack.free.fr/papers/nativint.pdf


1



Formalizing a SAT Proof Checker in Coq

Ashish Darbari, Bernd Fischer
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, England

email: {ad06v,b.�scher}@ecs.soton.ac.uk

Joao Marques-Silva
School of Computer Science and Informatics

University College Dublin, Bel�eld, Dublin 4, Ireland
email: jpms@ucd.ie

Abstract

Advances in SAT technology have made it possible for the SAT solvers to solve much bigger
instances of problems using fewer resources. Much of the speed of these solvers comes from
well-crafted optimizations but these complicate the implementations of the solvers, and make
them vulnerable to bugs. However, assurance can be re-gained by use of a checker that validates
the outcome of the solver. Two important aspects of this approach are (i) to ensure that the
checker program itself is bug free, and (ii) is easy-to-use as a standalone executable.

We have designed and implemented a SAT proof checker using the Coq proof assistant. Our
checker is capable of validating a SAT or an UNSAT claim of a SAT solver. In this paper we
report on the more interesting aspect of checking the unsatis�ability claims, which have the form
of a ground resolution proof. We present our formalization of the checker as a set of de�nitions
within Coq, and characterize and prove its correctness properties. The proofs have been all
machine checked in Coq, and an equivalent Ocaml executable program is extracted that can
be used independently of the proof-assistant itself. Finally, we present some early evaluation
results on industrial benchmarks to illustrate the strength of the extracted checker.

1 Introduction

Advances in SAT technology have made it possible for SAT solvers to be routinely used in the
veri�cation of large industrial problems. Moreover, they are now also used as back-end veri�ca-
tion engines in several safety-critical domains such as railway systems [1] and avionics [2]. Such
applications require some form of formal certi�cation or guarantee that they are correct.

However, much of the performance enhancements in SAT technology come from well-crafted
optimizations that make the SAT solvers vulnerable to implementation bugs. At the same time
their complexity makes formal proofs of their correctness extremely di�cult. For example, Lescuyer
et al [3] formalized a SAT solver in the Coq proof assistant and extracted an executable program.
The resulting program was mathematically rigourously checked, but its performance su�ered, due
to the lack of optimizations. Reasoning about these optimizations makes the formal correctness
proofs exceedingly hard, as shown by Mari¢ [4], who veri�ed the pseudo-code of the SAT algorithm
used in the ARGO-SAT solver but did not verify the solver itself.
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An alternative, and more e�ective approach for ensuring correctness is to not formalize the
SAT solver itself, but to instead formalize an independent checker in a proof-assistant, and use
that checker to validate the outcome of the SAT solver. Weber and Amjad [5] proposed the idea of
checking resolution proofs from SAT solvers by re-constructing them in LCF style higher-order logic
theorem provers Isabelle, HOL 4, and HOL Light. They imported the proof trace output obtained
from the proof-logging versions of Zcha� and Minisat into these theorem provers, and re-played
the proofs to check whether they are valid. The bene�t of this approach is that they can rely on
the trusted LCF style kernel of the theorem provers to check the resolution proof obtained from
the trace. However, a problem of this approach is that users need to be able to use these theorem
provers in order to use the checker.

Our approach follows the general ideas of Weber and Amjad, but solves the (practical) problem
of their work by extracting a stand-alone checker that can be used independently of the proof
assistant. We have formalized and implemented a SAT checker called SHRUTI in Coq. Given a
CNF description of the problem, and a proof trace obtained from a SAT solver, our checker can
determine the validity of the claim made by the solver. Our formalization has two parts, one for
checking the satis�ability claim (SAT), and another to validate the unsatis�ability claim (UNSAT).
In this paper we present the formalization of the UNSAT part of the checker in the Coq proof
assistant. We present some preliminary evaluation results on the industrial benchmarks from the
SAT Race competition [6] to illustrate the strength of our approach.

2 Proof Checking Overview

Most SAT solvers can also produce a proof carrying the explanation about why the given problem
was unsatis�able when they produce an UNSAT answer. Any checker should be able to read these
proof traces and should come up with a Yes/No answer depending on whether an outcome of the
SAT solver is correct or not. In fact many of these solvers such as Zcha�, Minisat, Picosat and
Booleforce provide a checker that does just that. However, none of these checkers are formally
certi�ed for correctness.

An UNSAT proof trace is a representation of general resolution proofs consisting of the original
clauses used during resolution and the intermediate resolvents obtained by resolving the original
input clauses. The parts of the proof which are regular input resolutions are called chains. The
whole trace thus consists of original clauses and chains. Since a chain is a new proof rule, its input
clauses are called `antecedents' and the �nal resolvent simply `resolvent'.

In order to design an e�cient checking algorithm we made use of the resolution inference rule [7].
This rule takes a pair of clauses in disjunctive normal form, and produces a union of the two clauses,
cancelling any complementary literals present in the two clauses. Of course, it is assumed that the
input clauses themselves have no duplicate literals, and have no complementary literals within
themselves. It is well known that this inference rule is sound and complete for propositional logic
and the proof can be found in [8, 9]. When this inference rule is used to compute a resolution
derivation on a set of clauses such that each resolved variable (i.e., the variable that occurs in the
pair of complementary literals) is distinct and each clause is either an input clause or a derived
clause obtained by the application of the resolution rule, the resolution derivation is called trivial
resolution [10]. We often use the term `trivial resolution' to mean the application of the `resolution
inference rule' since the application of the latter results in a trivial resolution.

The use of resolution rule ensures that the number of resolution steps taken to compute the �nal
resolvent of a chain is linear with respect to the number of antecedents within the chain. Thus the
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computation of a �nal resolvent in a chain begins at one end of the chain (in our case left most end
of the chain) and uses each antecedent within the chain only once.

We decided to test our certi�ed checker by reading the proof trace formats generated by Picosat,
because it can also generate proof traces readable in ASCII form as compared to some of the other
proof logging versions of solvers that only produces binary versions. Picosat [11] was also voted
as one of the best SAT solvers in the industrial category of SAT Race 2007. Like many SAT
solvers, Picosat reads the problem representation in DIMACS [12] notation. This uses non-zero
integers to denote literals. A positive variable is denoted by a positive integer while its complement
uses a negative integer. Zeroes are only used as delimiters. As an example consider the following
unsatis�able formula adapted from the README.tracecheck �le distributed with Booleforce. It
consists of all possible binary clauses over the two variables 1 and 2.

1 2 0
-1 2 0
1 -2 0
-1 -2 0

The zeroes at the end of rows are delimiters. A Picosat proof trace consists of such rows representing
the input clauses, followed by rows encoding the proof chains. Each �chain row� consists of an
asterisk (*) as place-holder for the chain's resolvent,1 followed by the identi�ers of the clauses
involved in the chain. Each chain row thus contains at least two clause identi�ers, and denotes an
application of one or more of the resolution inference rule, describing a trivial resolution derivation.
Each row also starts with a non-zero positive integer denoting the identi�er for that row's (input
or resolvent) clause. In an actual trace there are additional zeroes as delimiters at the end of each
row, but we remove these before we start proof checking. The input to our checker thus looks as
follows:

1 1 2
2 -1 2
3 1 -2
4 -1 -2
5 * 3 1
6 * 4 2 5

The �rst four rows denote the input clauses from the original problem (see above) that are used
in the resolution, with their identi�ers referring to the original clause numbering, whereas rows 5
and 6 represent the proof chains. In row 5, the clauses with identi�ers 3 and 1 are resolved using a
single resolution rule, whilst in row 6 �rst the original clauses with identi�er 4 and 2 are resolved
and then the resulting clause is resolved against the clause denoted by identi�er 5 (i.e., the resolvent
from the previous chain), in total using two resolution steps.

The algorithm of checking the validity of the proof trace relies singularly on the repeated use
of the resolution rule. Checking begins at the �rst row of the proof chain (in the above example it
would be 5), and the resolution rule is applied to all the antecedent clauses denoted by the identi�ers
in the chain. The resolvent clause (in this case consisting of {1}) is stored in a lookup table and is
tagged with the key identi�er 5. This process is then repeated for the next identi�er in the proof
chain (in our example it would be 6) and after two resolution rule applications an empty clause is
obtained. If the empty clause is obtained then the given problem is UNSAT (i.e., the checker will

1This is generated by Picosat; there is another option of generating proof traces from Picosat where instead of the
asterisk the actual resolvents are generated delimited by a single zero from the rest of the chain.
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return a Yes answer), or else if all proof chain identifers have been checked and the empty clause is
not derived, the given problem is not UNSAT (i.e., the checker will return a No answer). Correctness
of the checking algorithm depends on the correct implementation of the resolution inference rule.
The resolution rule itself is correct if it satis�es the following conditions:

1. All complementary literals are deleted from the given pair of clauses.
2. If the input pair of clauses contains a common literal then only one copy of that literal is

made in the resolvent.
3. All unequal literals in the given pair of clauses are retained in the resolvent.

Additionally the resolution rule should produce an empty resolvent for a given pair of clauses
that only contain complementary literals. A correctly implemented proof-checking algorithm would
produce an empty clause from a proof trace for an unsatis�able problem provided the trace contains
a well-ordered chain of antecedents. If the ordering of the antecedents is not preserved which is the
case with the compact resolution trace produced by Picosat, we are likely to introduce a scenario
at the time of checking in which each trivial resolution step does not necessarily create a resolvent
by cancelling complementary literals using linear number of steps. In other words the antecedents
cannot be resolved to form a regular input resolution proof or the trivial proof e�ciently. The
tracecheck program distributed with Picosat can expand the trace output from Picosat and �x the
ordering problem of the chains. It takes a resolution proof trace from Picosat as input and creates
an extended resolution trace.

In the next section we present our formulation of the UNSAT part of the checker SHRUTI specif-
ically showing the formalization of the resolution inference rule and we characterize its correctness
properties by formalizing three main theorems.

3 Formalization of SHRUTI in Coq

3.1 Motivation for using Coq

We wanted to design a certi�ed proof checker that can be formalized and mechanically veri�ed using
a proof-assistant to generate a high level of con�dence, and at the same time enable the user to
use it independently of the proof-assistant. We envision that by not compromising the safety, and
enhancing ease-of-use, we can encourage the use of certi�ed checkers as a regular component during
the SAT checking �ow. We therefore decided to use a proof-assistant in which it would be possible
to achieve both our goals and the obvious choice was the Coq proof assistant. Coq has been widely
used in several certi�cation projects; most well known is the certi�cation of a C compiler [13].

3.2 Formalizing SHRUTI

At the heart of SHRUTI is the formalization of the UNSAT part of the checker in Coq. The
formalization makes use of a shallow embedding of the proof checker inside Coq using the data
types and data structures of the Coq meta logic to represent the types and data structures of
the proof checker. We then formulate de�nitions over these, and formally prove inside Coq that
these de�nitions are correct. Once the Coq formalization is complete, Ocaml code is extracted
from it through the extraction API that comes with Coq. At the time of extraction, the Coq data
types/data structures are mapped to Ocaml data types/data structures. This way, we get the safe,
static, one-o� characterization in Coq combined with the run-time execution speed of Ocaml. The
extracted Ocaml code expects to read its input data from data structures such as tables and lists.
Data is stored in these from �les containing the CNF description and the proof trace. This is
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handled by some extra piece of Ocaml glue that wraps the extracted Ocaml code. The glue code
also contains functions for pro�ling and logging the results in �les. The result is then compiled
into a native machine code executable that can be run independently of the proof-assistant Coq. A
high-level architectural view is shown in Figure 1.

Formally  Certified SAT Checker

Ocaml API  
One off offline formalization of
function definitions  and
mechanized proofs.
     

 Coq

extract
Extracted Ocaml

I/O functions
Profilers
Pre-processing

Certified Proof
Checker

Figure 1: A High Level Architectural View of the Certi�ed Checker.

We assume familiarity with the quanti�ers (∀, ∃) and logical connectives such as and (∧), or (∨),
not (¬) and implication. We distinguish implication over propositions by ⊃ and over types with →
for presentation clarity, though inside Coq they are exactly the same. The notation⇒ is used during
pattern matching (using match-with-end) as in other functional languages. For type annotation we
use :, and for the cons operation on lists we use ::. Empty list is denoted by nil . The set of integers
is denoted by Z , the type of polymorphic list by list and the type of list of integers by list Z . List
containment is represented by ∈ and its negation by /∈. The function Zabs computes the absolute
value of an integer. We use De�nition to denote the Coq function de�nitions. Main data structures
that we have used in Coq formalization are lists, and �nite maps. Finite maps or simply maps are
functionally similar to hashtables with integer keys and polymorphic bindings although they are
implemented using balanced binary trees.

To de�ne the resolution function we make use of an auxillary function union which is de�ned
below. This function takes as input a pair of clauses represented as a list of integers and an
accumulator, and performs the functionality of the resolution operation.

De�nition union (c1 c2 : list Z )(acc : list Z ) =
match c1 , c2 with

| nil , c2 ⇒ app (rev acc) c2

| c1 ,nil ⇒ app (rev acc) c1

| x :: xs, y :: ys ⇒ if (x + y = 0) then union xs ys acc
else if (Zabs x ) < (Zabs y) then union xs (y :: ys) (x :: acc)
else if (Zabs y) < (Zabs x ) then union (x :: xs) ys (y :: acc)
else union xs ys (x :: acc)

The key feature of this function is that it expects the input clauses to be sorted by absolute
value and the resolvent produced is also sorted by absolute value. This has the bene�t of keeping
the e�ciency of the resolution operation linear in the size of the input clauses.

De�nition sorted =
Inductive sorted : list Z → Prop :=
| sorted0 : sorted nil
| sorted1 : ∀z : Z . sorted (z :: nil)
| sorted2 : ∀z1 z2 :Z `: list Z . (Zabs z1 ≤Zabs z2 ) ⊃ sorted (z2 :: `) ⊃ sorted (z1 :: z2 ::`)
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Note that in this predicate we do not enforce the constraint that an element has to be strictly
less than the other, as we use the ≤ relation. However, when it comes to the proofs later on,
this constraint is automatically enforced by stating that the clauses cannot contain duplicates or
complementary literals.

Once the input clauses are sorted by absolute value, at the time of resolution each integer in
the clause is compared pointwise. If the integers are complementary to one another then neither
is added to the accumulator else the smaller (in terms of absolute value) of the two is added. If
the integers are equal, one of them is stored in the accumulator. Once a single run of any of the
clauses is �nished, the accumulator's contents are sorted and then merged with the other, longer
clause. Sorting is done by simply reversing the accumulator. This is because integers are added to
the front of the list using the (::) operation, and the resulting accumulator has the �nal elements
in descending order.

The actual binary resolution function is de�ned below. It is denoted by ./ and makes use of the
union function.

De�nition c1 ./ c2 = (union c1 c2 nil)

To ensure that the formalization of our checker is correct we need to check that the resolution
(./) function is de�ned correctly. What it means is that it should preserve the basic properties of
the binary resolution function which are enumerated below:

1. Any pair of complementary literals is deleted in the resolvent obtained from resolving a given
pair of clauses (Theorem 1).

2. All non-complementary literals that are pairwise unequal are retained in the resolvent (The-
orem 2).

3. For a given pair of clauses, if there are no duplicate literals within each clause, then for a
literal that exists in both the clauses of the pair, only one copy of the literal is retained in the
resolvent (Theorem 3).

We have proven these properties in Coq. The actual proof, including several lemmas, comprises
in total about 2000 lines of proof script in Coq.

For the sake of clarity in presentation we do not detail all the assumptions but we need to assume
that the following assumptions hold for the three main theorems that we present later on.

1. No duplicates are allowed in each of the clauses c1 and c2 .
2. There exists no mutually complementary pair of literals within each of the clauses c1 and c2 .

These assumptions are essentially the constraints imposed on input clauses when the resolution
function is applied in practice.

Since we have developed the machine checked proofs2 we will not show the proof of these
theorems in this paper. The general stratgey is to use structural induction on clauses c1 and
c2 . For each theorem, this results in four main goals, three of which are proven by contradiction
since for all elements `1, `1 /∈ nil. For the remaining goal a case-split is done on if-then-else,
thereby producing 8 sub-goals, some of whom are proven from induction hypotheses, and some
from con�icting assumptions arising from the case-split. For others we employ a collection of
special properties. Some of these are about integers and their reationship with their absolute values
and the fact that these values appear in sorted lists without duplicates. Some are about counting

2Available at http://users.ecs.soton.ac.uk/ad06v/papers/coqwkshp09/
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an element and its relationship with the ./-function. The interested reader is referred to the online
proof script. We will point out some of the main properties used in the proof of the theorems when
we present the theorem.

Theorem 1. All complementary literals are deleted:

∀c1 c2 . sorted c1 ⊃ sorted c2 ⊃
∀`1 `2. (`1 ∈ c1 ) ⊃ (`2 ∈ c2 ) ⊃ (`1 + `2 = 0) ⊃

(`1 /∈ (c1 ./ c2 )) ∧ (`2 /∈ (c1 ./ c2 ))

We make use of two important properties to prove two of the sub-goals arising in the proof of this
theorem. The �rst property states that if an element is not present in either of c1, c2 or acc then
it cannot be present in the resolvent of c1 and c2. The other important property states that if an
element is already in acc then it exists in the resolvent of c1 and c2.

For the following theorem we need to assert in the assumption that for any literal in one clause
there exists no literal in the other clause such that the sum of two literals is 0. This is de�ned by
the predicate NoMutualComp.
Theorem 2. All non-complementary, unequal pair of literals is retained:

∀c1 c2 . sorted c1 ⊃ sorted c2 ⊃
∀`1 `2. (`1 ∈ c1 ) ⊃ (`2 ∈ c2 ) ⊃ (`1 6= `2) ⊃

(NoMutualComp `1 c2) ⊃ (NoMutualComp `2 c1) ⊃
(`1 ∈ (c1 ./ c2 )) ∧ (`2 ∈ (c1 ./ c2 ))

For the proof we make use of an important property that states if an element is in clause c1 and is
not in clause c2 and provided that its complement also does not exist in either c1 or c2 we will get
that element in the resolvent of c1 and c2.

Theorem 3. (Factoring) Only one copy of equal literal is retained:

∀c1 c2 . sorted c1 ⊃ sorted c2 ⊃
∀`1 `2. (`1 ∈ c1 ) ⊃ (`2 ∈ c2 ) ⊃ (`1 = `2) ⊃

((`1 ∈ (c1 ./ c2 )) ∧ (count `1 (c1 ./ c2 ) = 1))

The proof of this theorem makes use of an important counting property. It states that if an element
occurs in the accumulator acc once, and it exists in union c1 c2 acc but it does not exist in c1 or c2,
then it must only occur once in union c1 c2 acc.

In order to check the resolution steps for each row, we have to collect the actual clauses corre-
sponding to their identi�ers and this is done by the findClause function.

De�nition findClause acc ctbl rtbl dlst =
match dlst with

| nil ⇒ (List .rev acc,true)
| (x :: xs) ⇒
match (find x rtbl) with
| Some a ⇒

findClause (a :: acc) ctbl rtbl xs
| None ⇒

match (find id ctbl) with
| None ⇒ (acc,false)
| Some a ⇒ findClause (a :: acc) ctbl rtbl xs
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The function findClause takes a list of clause identi�ers (dlst), an accumulator (acc) to collect
the list of clauses, and requires as input a table that has the information about all the input
clauses (ctbl). It also takes another table (rtbl) as an argument which is the table that contains the
processed resolvents. Whenever a clause id is processed, then its resolvent clause is �rst looked up
in the resolvent table, if that contains no entry for the given clause identi�er, the clause is obtained
from ctbl . If there is no entry in either of the tables, an error is signalled. It means there is a clause
id for which there is no clause. This could be because there is an input/output problem with the
proof trace �le.

We then prove some sanity-checking properties about the maps. An obvious property that
follows from the �nite map implementation itself is that if a key is inserted in a table it will return
some binding on being queried. We prove that if an entry is not found in the clause table and the
resolvent table then the false �ag is raised.

The function that uses the ./ function recursively on a list of input clause chain is called
hyperResolution and it simply folds the ./ function from left to right for every row in the proof
part of the proof trace �le.

De�nition hyperResolution lst =
match (lst : list (list Z )) with
| nil ⇒ nil
| (x :: xs) ⇒ List .fold left (./) xs x

The function findAndResolve is our last function de�ned in Coq world for UNSAT checking and
provides a wrapper on other functions. The proof traces obtained from Picosat contains the proof
chains specifying the clause identi�ers used to derive the con�ict, and the actual clauses that are used
to generate the con�ict. At the time of proof checking the pre-processed (trailing 0s removed) input
proof trace is scanned and for each line in the trace it is either stored into a clause table (ctbl) since it
represents an input clause, or in the trace table (ttbl) because it denotes a proof chain. The function
findAndResolve then starts the checking process by �rst snar�ng all the antecedents (identi�ers for
clauses) in a chain from the trace table, and then for each antecedent, obtains the actual clause
either from the clause table or from the resolvent table by using the function findClause.

De�nition findAndResolve ctbl ttbl rtbl id =
let dlst = (find id ttbl) in

match dlst with

| None ⇒ (add id (0 :: nil) rtbl)
| Some a ⇒

let (cls,flag) =
findClause nil ctbl rtbl a in

match flag with

| false ⇒ add id (0 :: (0 ::nil)) rtbl
| true ⇒ add id (hyperResolution cls) rtbl

Once all the clauses are obtained for a single chain, the function hyperResolution is called and
applied on the list of clauses for all proof chains. For each chain, the resolvent is stored in a separate
resolvent table and tagged with the chain identi�er from the trace table. It then checks whether
the resolvent for the identi�er of the last chain is an empty clause (i.e., empty list), and returns Yes
(meaning that the solver's UNSAT claim is valid) if it �nds one, else No.
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We prove that if there is no binding for a given identi�er in the trace table then a list with single
zero is inserted in the resolvent table corresponding to this identi�er. Similarly we prove that if the
findClause function returns an error (�ag is set to false) then a list with two zeroes is inserted in
the resolvent table.

Since the proof trace obtained from Picosat contains proof chains that are a trivial resolution
derivation, and since they are well-ordered, it is guaranteed that at the time of proof checking
each application of the resolution inference rule will resolve at least one complementary pair of
literals, thereby decreasing the count of total literals in the resolvent. For an UNSAT problem
there would be enough proof chains and enough antecedents in each chain so that �nite amount of
resolution inference rule applications would eventually produce a pair of clauses with equal number
of literals that are complementary to one another, and thus the �nal application of resolution rule
would produce an empty clause. Our implementation of the resolution inference rule guarantees
(due to the three main theorems presented) that this will happen provided the input proof trace is
well-ordered and represents a chain of trivial resolution derivations.

We also check whether the given proof trace is a legal proof trace, i.e., whether any input clause
used in any proof chain in the given trace is contained in the original problem. If the trace is not
legal then the user gets a message and the checker aborts. However, this is provided as an option
to the user at runtime, and if invoked, adds about 1-2% time overhead. This feature is currently
optional because the uncerti�ed checkers currently do not do this, and for comparing the runtime
performances of our checker with uncerti�ed ones we would like to disable this option at runtime
to keep the comparison fair. Comparison results for these are still in process.

4 Results and Discussion

Benchmark Proof Steps SHRUTI (opt.) SHRUTI (orig.)

een-tip-uns-nusmv-t5.B 122816 0.91 5.82

een-pico-prop01-75 246430 1.29 10.14

ibm-2004-26-k25 1132 0.004 0.02

ibm-2002-26r-k45 1105 0.001 0.02

ibm-2004-3 02 1-k95 114794 0.63 3.87

ibm-2004-6 02 3-k100 126873 0.76 4.92

ibm-2004-1 11-k25 254544 1.86 11.29

ibm-2002-07r-k100 255159 1.38 9.37

ibm-2004-2 14-k45 701430 6.59 51.51

manol-pipe-c10nidw s 458042 2.82 19.51

manol-pipe-f6bi 1058871 10.32 97.85

Table 1: Results showing the times taken by our extracted checker on a sample of industrial benchmark prob-
lems from the SAT Race Competition. We show the number of proof steps obtained from Picosat/tracecheck
in the second column. The third column shows the time taken by our optimized version SHRUTI (opt.)
whilst the last one shows the timings obtained from the originally extracted, un-optimized version SHRUTI
(orig.). The compiled binaries in both the cases were executed on a server running Red Hat Linux with Intel
Xeon CPU 3 GHz, and 4GB memory. All times include resolution checking time, I/O and pre-processing
times.

Our checker was tested on a chosen set of industrial benchmarks from SAT Race. The results

9



are summarized in Table 1. We pre-processed the input trace �le to remove trailing zeroes using
Ocaml routines. We do not enforce the check for duplicates in the input trace. If they are present in
any line of the trace, they will �ripple out� in the resolvent, and an empty clause cannot be derived
using the resolution based proof-checking. The input trace then no longer represents an UNSAT
problem and the checker will simply return a No verdict.

We experimented with the extraction process and optimized the extracted Ocaml functions for
e�ciency. In our �rst implementation we only mapped the Coq lists to Ocaml lists. The resulting
implementation (shown as SHRUTI (orig.) in the table) was more than one order of magnitude
slower.

The Coq Zs were replaced with Ocaml integers and we replaced the Coq functions on Zs with
the equivalent Ocaml functions. We also replaced the Coq �nite maps with Ocaml �nite maps and
together with this change noticed a signi�cant improvement.

Replacing Coq Zs with Ocaml integers and the maps gave a performace boost by a factor of
5-10. This can be perhaps attributed to the reduced overhead when dealing with Ocaml integer
keys (in the Ocaml maps) directly, without having to convert between Coq Zs and Ocaml integers,
and that all integer operations were now done on Ocaml integers.

A substantial bottle-neck in performance was the Ocaml garbage collector that unwittingly
kicked in each time the number of inference steps exceed one million. The e�ect of this was almost an
exponential drop in performance. We therefore changed the runtime settings of the garbage collector,
by specifying large initial sizes for major and minor heaps and controlling the space overhead and
max overhead settings such that minimal amount of garbage collection takes place. This enabled
us to have much better execution times that scaled linearly with the number of inferences and we
are now able to check proof traces with up to 15 million inferences. The results for this are shown
as SHRUTI (opt.) in the table. Our extraction process only mapped Coq data structures to Ocaml
data structures to enhance e�ciency which is a standard practice in any program extraction based
development in Coq. An important point to note here is that the core logic and functionality of the
checker program is not compromised by program extraction in Coq.

5 Related Work

Lescuyer et al. [3] formalized a SAT solver in the Coq proof assistant and extracted an executable
program. The resulting program was mathematically rigourously checked, but its performance
su�ered, due to the lack of optimizations. Recently Mari¢ [4] proposed to verify a SAT solver with
the low-level optimizations. He formalized the ARGO-SAT solver in Isabelle/HOL by modelling the
solver and its low-level optimizations at an abstract level (pseduo code). One major di�culty is that
it is di�cult to formalize low-level optimizations (that work on real code used in a SAT solver) at a
su�ciently abstract level without loosing sight of the low-level details. Even though optimizations
were formalized, they were done for the pseudo-code, not the actual code that is used in the solver
which still leaves the gap between what is formalized and what is used at runtime. Moreover, its
practically not very useful (it took Mari¢ one man year) to verify a solver, since it has to be done
for each new solver. Instead its more e�cient to verify a checker correct (since checkers are small
and relatively straight-forward), and use it to validate outputs of any solver that produces proof
certi�cates that were previously agreed.

Weber and Amjad [5] proposed the idea of checking resolution proofs from SAT solvers by
re-constructing them in higher-order logic based theorem provers Isabelle, HOL 4 and HOL Light.
They imported the proof trace output obtained from the proof-logging versions of Zcha� and Minisat
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into these theorem provers, and re-played the proofs to check if they are valid.
A key di�erence between our checker and Weber and Amjad's is in the design and usage. In order

to use Weber and Amjad's checker one has to have the di�erent theorem provers installed, and more
importantly the knowledge of using each one of them becomes paramount. In our case, we provide
an executable binary that can be run independently of the Coq theorem prover or any other for that
matter. Thus usability is considerably enhanced in our case. Weber and Amjad mostly reported
their performance results on pigeon-hole problems and not much on industrial benchmarks. Pigeon
hole problems though somewhat hard are also arti�cially created and thus share a common structure
to them, so we personally decided not to calibrate our checker on these problems and instead chose
to test ours on industrial benchmarks from the SAT Race Competition. We are investigating if
we can get Weber and Amjad's checkers results' on the industrial benchmarks, and provide some
comparison with our's. Bulwahn et al. [14] experimented with the idea of doing re�ective theorem
proving in Isabelle and suggested that it can be used for designing a SAT checker. In this sense their
work is closest to our's. They proposed to enhance the functional core of Isabelle with imperative
data structures for e�ciency. However we have not seen the complete formalization of their SAT
checker, and no benchmark results have been reported to the best of our knowledge. Recently there
has been some work done in certifying SMT solvers notable amongst them are the work done by
Moskal [15] and de Moura [16].

In a recent development related to Coq, there has been an emergence of a tool called Ynot [17]
that can deal with arrays, pointers and �le related I/O in a Hoare Type Theory. Future work in
certi�cation using Coq should de�nitely investigate the usage of this.

6 Conclusion

We presented the formalization of a SAT checker in the Coq proof assistant and presented some
of the early benchmarking results. We observed that by using Coq we could do a one-o� o�ine
formalization of the checker and machine check all the proofs in Coq, while at the same when
we extract an ocaml program, we obtain a fast executable binary, that can be used for checking
industrial benchmarks as demonstrated by some of our results.
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Abstract

One principal obstacle to integrating into Coq the full power of au-
tomated theorem provers is translation of the input into the prover’s
internal logic. Many translations introduce new predicates which actu-
ally change the logical meaning, making it difficult to recover a proof
object of the input problem from the solution to the translated prob-
lem. We present a novel method for translating back proofs by reinter-
preting the new predicates. The method is described for a particular
prover logic, but is in principle generic. We illustrate the idea by a
few examples in Coq. Since Coq allows abstraction over the new pred-
icates, the proofs can be obtained with minimal overhead.

1 Introduction

Coq is a great interactive theorem prover. Yet as of today, complete for-
malization of complex results requires considerable amount of effort. Many
small steps which would be left out of a published proof have to be ex-
plicitly justified by the user. In contrast, automated theorem provers can
solve small problems completely autonomously, but are inherently incapable
of dealing with deep mathematical results. If it were possible to integrate
the automated First-Order Logic (FOL) provers into the Coq system, the
amount of detail to be spelled out in formalizing a theorem would be greatly
reduced.

The major obstacle to this enterprise is the fact that the resolution
method, which is the basis of most high-performance FOL provers today,
necessarily involves a normalization step converting the original problem
into a Clause Normal Form, see [7, pp.19–99,273–333]. This step is difficult
to undo at the level of proof objects. Skolemization in particular makes it
difficult to lift the proof of the translated problem to a lambda term inhab-
iting the type of the original problem.
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We present a translation with proof objects for Coherent Logic (CL),
which extends resolution with existential quantifiers, making skolemization
unnecessary. The Geo2007 prover is an example of an automated theorem
prover based on Coherent Logic competing in CASC [4]. Our central result
is that the proof objects for the input problem can be recovered from the
proof of the translation with virtually no effort.

2 Coherent Logic

The general form of a coherent formula is

A1 ∧ · · · ∧Am → B1 ∨ · · · ∨Bn (1)

with Ai atomic and Bi of the form

∃~y.D1 ∧ · · · ∧Dk

with Di atomic. In contrast with resolution, where Bi must also be atoms,
coherent logic allows Bi to be existentially quantified conjunctions of atoms.
If the clause (1) contains free variables, these are implicitly universally quan-
tified. Thus coherent clauses are interpreted as universal closures of (1).

One of the attractive features of Coherent Logic is that, in a sense, it is
its own proof theory. Specifically, a set of coherent clauses serves both as a
set of axioms as well as a complete set of deduction rules which generate all
logical consequences of these axioms.

Definition 1. Let Γ be a set of facts (atomic formulas). Γ can be viewed
as a coherent theory by taking the set

{> → A}A∈Γ

Generally, > will be written on the left of the arrow in (1) to denote that
m = 0. If n = 0, we will write ⊥ on the right.

Definition 2. Let Γ be a set of closed facts, T a coherent theory, φ a fact.
Let dom(Γ) denote the set of terms which occur in Γ. The relation Γ `T φ
is defined by induction:

Base Γ `T φ if φ ∈ Γ.

Induction Let C =
∧
Ai →

∨
Bj be a clause in T and σ : FV(C)→ dom(Γ)

a substitution with {Aσi }1≤i≤m ⊆ Γ. If for each 1 ≤ j ≤ n,
Bj = ∃~y.D1 ∧ · · · ∧Dk we have Γ ∪ {Dσ

i }1≤i≤k ` φ, then Γ ` φ.

With no loss of completeness, we will restrict our attention to ground rea-
soning. This means that all of the facts in Γ are closed and in the induction
step the existentials introduce fresh constants into the Dσ

i .
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Figure 1: A derivation of goal

¬¬φ −→ φ
¬

∧
φi −→

∨
¬φi

¬
∨
φi −→

∧
¬φi

¬∃~xφ −→ ∀~x¬φ
¬∀~xφ −→ ∃~x¬φ

(φ→ ψ) −→ (¬φ ∨ ψ)
(φ↔ ψ) −→ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

Figure 2: NNF transformation

Example 3. Coherent derivations are usually visualized as trees. For ex-
ample, consider the theory

T =


> → d(a)

∀x. d(x) → goal ∨ (p(x) ∧ E)
E → ∃y.(q(y) ∧ d(y))

∀x. p(x) ∧ q(x) → goal

Then ∅ `T goal. The derivation as per Definition 2 is illustrated in Figure 1.
Every node in the tree corresponds to a state Γ consisting of all the facts
occurring on the path from the root to the node. Inference nodes (0,1,4,6,
and 9) correspond to applications of the induction case of `T , while the
leaves correspond to the base case. See [6] for a detailed discussion. John
Fisher implemented the “visual” prover which we used to generate the trees.

Fact 4 (Completeness of Coherent Logic, [1]). Let T be a coherent theory,
φ a closed atomic formula. Then

∅ `T φ ⇐⇒ T |= φ

where |= is the Tarskian entailment of T as a first-order theory.

3 The Canonical Translation

The basic idea for a translation from FOL to CL was suggested in [1]. Es-
sentially it consists of encoding the semantic tableaux proof method [7,
pp.100–178] into a set of coherent clauses. A refutation of the given formula
by a tableaux system corresponds to a derivation of ⊥ from the translated
theory by a CL prover.

Although general tableau rules for logical operators come in both po-
larities, we will find it convenient to restrict ourselves only to the positive
rules. As such, we will consider negation normal forms (NNFs) as the basic
forms of input, where negations only occur in front of atomic formulae and
the only propositional connectives are ∧ and ∨. A general FOL formula is
converted into a NNF by normalizing it under the rules in Figure 2.
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We now define the canonical translation from FOL to CL.

Definition 5. Let P be a formula in NNF.

• For an atomic predicate A occuring in P , let

– TA, FA be fresh predicate symbols of the same arity as A,

– CA be the coherent clause

∀~x. TA(~x) ∧ FA(~x)→ ⊥

• For a literal L ⊆ P , define the formula

Lt =

{
TA(~t ) if L = A(~t )
FA(~t ) if L = ¬A(~t )

• For a compound (non-literal) subformula Q ⊆ P , let

– TQ be a fresh predicate of arity |FV(Q)|,
– Qt be the formula TQ(~x), where ~x = FV(Q),

– CQ be the coherent clause defined according to the top connective
in Q, with implicit universal quantification over all free variables:

Q CQ = ∀~x.

Q1 ∧Q2 ∧ · · · ∧Qn Qt → Qt
1 ∧Qt

2 ∧ · · · ∧Qt
n

Q1 ∨Q2 ∨ · · · ∨Qn Qt → Qt
1 ∨Qt

2 ∨ · · · ∨Qt
n

∃~yR Qt → ∃~yRt

∀~yR Qt → Rt

• The canonical coherent theory of P is the set

TP = {> → P t} ∪ {CA}A atomic predicate in P ∪ {CQ}Q⊆P

Definition 6. Let Γ be a first-order theory. The canonical translation of Γ
is

TΓ =
⋃
φ∈Γ

TNNF(φ)
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Figure 3: A derivation of false

Example 7. Suppose we wish to find a coherent theory equisatisfiable with
the formula

φ = ¬((∀xy.Ax ∨By)→ (∀x.Ax) ∨ (∀x.By))

The first step is to compute the negation normal form of φ:

NNF(φ) = (∀xy.Ax ∨By) ∧ (∃x.¬Ax ∧ ∃y.¬By)

Now the new predicates Tψ for every ψ ⊆ NNF(φ) are introduced:
T(∀xy.Ax∨By)∧(∃x.¬Ax∧∃y.¬By), T∀xy.Ax∨By, T∃x.¬Ax∧∃y.¬By, TAx∨By(x, y), T∃x.¬Ax,
T∃y.¬By, TA(x), FA(x), TB(x), FB(x).

Finally, one constructs the clauses as per Definition 5:

Tφ =



> → T(∀xy.Ax∨By)∧(∃x.¬Ax∧∃y.¬By)

T(∀xy.Ax∨By)∧(∃x.¬Ax∧∃y.¬By) → T∀xy.Ax∨By ∧ T∃x.¬Ax∧∃y.¬By
T∀xy.Ax∨By → TAx∨By(x, y)
TAx∨By(x, y) → TA(x) ∨ TB(y)
T∃x.¬Ax∧∃y.¬By → T∃x.¬Ax ∧ T∃y.¬By
T∃x.¬Ax → ∃x.FA(x)
T∃y.¬By → ∃y.FB(y)
TA(v) ∧ FA(v) → ⊥
TB(v) ∧ FB(v) → ⊥

As the reader may have been expecting, the set of clauses above is inconsis-
tent. The derivation of ⊥ from Tφ is shown in Figure 3, where dom is the
domain-predicate and ski are fresh constants substituted for existentials.
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4 Proof Objects

The refutation of a coherent theory consists, as we have seen, of applica-
tions of its clauses organized into a tree. Thus if φ is a FOL formula and
T¬φ = {C1, C2, ..., Cn} is the canonical translation of its negation, then the
derivation of ⊥ from this translation will give us a proof object of type

C1 → C2 → · · · → Cn → ⊥

At the same time, a proof of the original problem can be obtained by ap-
plying the classical NNPP term to the type

(φ→ ⊥)→ ⊥

Thus the problem of proof reconstruction consists of inhabiting the Ci’s in
the context Ax = {s : φ→ ⊥}.

4.1 Erasing the t s

The key observation we wish to convey is that the coherent clauses CQ
become one-step tautologies if the formulas Qt are replaced by Q. That
is, if the fresh predicates TQ are instantiated by the formulas Q. Indeed,
the superscript t acts very much like a quote of a formula. The quick way
to recover the proof is then to “unquote” all formulas. For example, let
Q = Q1 ∧Q2 be a subformula of P . Then the clause

CQ = ∀~x.Qt → Qt1 ∧Qt2

would, after “erasing the quotes”, become

∀~x.Q1 ∧Q2 → Q1 ∧Q2

which is a trivial tautology that can be easily solved by the tauto tactic.
Generally, the types Ci corresponding to the coherent clauses CQ are inhab-
ited explicitly by small terms.

Inhabitation of the finish rules CA for A atomic is just as easy. In accor-
dance with instantiating the literals Lt with the formula L, the predicates FA
should be interpreted as negations ¬A. Thus the “bottoming out” clauses

CA = ∀~x.TA(~x) ∧ FA(~x)→ ⊥

are changed into the form

∀~x.A(~x) ∧ (A(~x)→ ⊥)→ ⊥

These types too can be inhabited by explicit terms.
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Finally, it remains to find the inhabitant of the start rule > → (¬φ).
But this is exactly the content of the term s provided in the context Ax of
the prover. The start rule is inhabited by λo : >.s.

We have thus found an inhabitant of every type required by the prover.
The recovery of the proof object for the input problem is complete.

The translation, proof search, and proof object recovery can all be fully
automated to the point that given a (first-order) goal, one can actually get
the Coq term inhabiting its type if the prover succeeds. Since the proof
produced by the prover is generalized over all predicates and domains which
are afterwards bound to explicit terms, the context is never polluted by any
new variables. Thus we have a clean, complete, automated proof procedure
for first-order tautologies. This process is illustrated in the following.

4.2 An Example

Example 8. Let P be the first-order tautology

P = (∀xy.Ax ∨By)→ (∀x.Ax) ∨ (∀x.By)

The negation normal form of ¬P was computed in Example 7. Automation
of translation and proof search yields a Coq term p of the following type
(compare figure 3):

Coq < Check p.
p

: forall (dom : Set) (goal : Prop) (fA fB : dom -> Prop)
(t0 t00 : Prop) (t000 : dom -> dom -> Prop)
(t01 t010 t011 : Prop) (tA tB : dom -> Prop),

t0 ->
(forall A : dom, tA A /\ fA A -> False) ->
(forall A : dom, tB A /\ fB A -> False) ->
(t0 -> t00 /\ t01) ->
(forall A B : dom, t00 -> t000 A B) ->
(forall A B : dom, t000 A B -> tA A \/ tB B) ->
(t01 -> t010 /\ t011) ->
(t010 -> exists A : dom, fA A) ->
(t011 -> exists A : dom, fB A) -> goal

The actual term is rather large, and due to the space requirements we
are not able to include it here. Notice however, that it is abstract not only
in the predicates which occur in the input formula, but also the domain(s)
of discourse and the goal of the prover, which is False in our case.
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In order to get the proof of P , it remains to do the following.

1. Bind the newly introduced predicates to the formulas they represent.

Let tA := A.
Let fA := ∼ A.
Let tB := B.
Let fB := ∼ B.
Let t000(X,Y) := tA(X) \/ tB(Y).
Let t00 := (forall X Y : D, t000(X,Y)).
Let t010 := (exists X, fA X).
Let t011 := (exists Y, fB Y).
Let t01 := t010 /\ t011.
Let t0 := t00 /\ t01.

2. Construct proof objects for the coherent clauses.

Lemma ax1 V0 : tA V0 /\ fA V0 -> False.
intros v0 H; elim H. auto. Qed.
Lemma ax2 V0 : tB V0 /\ fB V0 -> False.
intros v0 H; elim H. auto. Qed.
Lemma ax3 : t0 -> t00 /\ t01.
Proof. trivial. Qed.
Lemma ax4 : forall X Y : D, t00 -> t000 X Y.
Proof. trivial. Qed.
Lemma ax5 : forall X Y : D, t000 X Y -> tA X \/ tB Y.
Proof. trivial. Qed.
Lemma ax6 : t01 -> t010 /\ t011.
Proof. trivial. Qed.
Lemma ax7 : t010 -> (exists X, fA X).
Proof. trivial. Qed.
Lemma ax8 : t011 -> (exists Y, fB Y).
Proof. trivial. Qed.

3. Apply the proof object of the translated theory to the translated
clauses.

Theorem nnP: (forall X Y : D, (A X) \/ (B Y)) /\
((exists X : D, ∼(A X)) /\ (exists Y : D, ∼(B Y))) -> False.
Proof.
intro s. apply (p D False fA fB t0 t00 t000 t01 t010 t011 tA tB
s ax1 ax2 ax3 ax4 ax5 ax6 ax7 ax8). Qed.

As a result, we get the proof object of NNF(¬P ) → ⊥, from which it is
routine to obtain a lambda term inhabiting the type P .
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5 Improved Translation

The canonical translation described above has the advantage of conceptual
elegance and is simple to implement, but unfortunately the theories it pro-
duces are of very poor quality for the purposes of proof search. As such,
we found it necessary to considerably extend the algorithm in order to over-
come its previous shortcomings. The fact that proof objects could still be
recovered with little effort demonstrates the flexibility and generality of the
method.

The problems with the naive translation are illustrated by the formula

∀xyz. p(x, y, z)→ q(x, y, z).

Although this formula is already coherent, its translation is

∀xyz. > → FP (x, y, z) ∨ TQ(x, y, z).

Since all implications are rewritten as disjunctions, any universal quantifi-
cation over them will yield, during the forward ground proof search, an ex-
ponential tower of proof splits. If the clause was ever reached by the prover,
it would give rise to a branch for every sequence of triples of elements from
the domain.

Our solution was to allow disjunctions
∨
Qi to generate clauses where

some Qi’s occur in negative positions:

Qt ∧Qfi →
∨
j 6=i

Qtj

The general way to do this (allowing several Qis to move to the left while
containing the immense number of possible translations) is beyond the scope
of this paper. The final algorithm produced superior theories without the
problems of the naive approach, but at the cost of added complexity. Re-
markably, recovery of proof objects remained virtually effortless. One way
is to instantiate Qfi with ¬Qi and inhabitate

Q ∧ (Qi → ⊥)→ (Q1 ∨ · · · ∨Qi−1 ∨Qi+1 ∨ · · · ∨Qn)

A simpler approach is to instantiate Qfi with ¬Qti, and, before the Qts are
instantiated, to apply a term of type

(Qt → Qt1 ∨ · · · ∨Qtn)→
Qt ∧ ¬Qti → Qt1 ∨ · · · ∨Qti−1 ∨Qti+1 ∨ · · · ∨Qtn

to the required clause. Of course, all such types are inhabitated mechani-
cally.
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6 Function Symbols and Equality

So far we paid no special attention to the role of functions and/or equality
in translations. However, the Geo system, developed by Hans de Nivelle,
supports equality reasoning and uses a different translation scheme. Our
proof reconstruction technique still applies, albeit with certain adaptations,
all of which are very straightforward.

Geo2007 is based on geometric logic and participates in the CADE ATP
System Competition [4]. In the category FOF (first-order formulas) it solved
31% of the problems, down from 48% in 2006 (for unknown reasons). In the
category FNT (model finding for first-order formulas), Geo2007 performed
very well: 81% of the models were found, only marginally behind the winner
Paradox, which solved 85%.

The translation from FOL to CL used by Geo has one remarkable feature,
namely that function symbols are completely eliminated. Every n-ary func-
tion symbol is eliminated by introducing a new (n+1)-ary predicate symbol
representing the graph of the function. Even constants are eliminated, using
unary predicates. For example, constant a is eliminated from p(a) by intro-
ducing a new unary predicate A and by replacing p(a) by ∀x. A(x)→ p(x),
under the addition of the axiom ∃x. A(x). No axioms postulating unique-
ness are needed. The function f in, for example, ∀x. p(f(x)) is eliminated
by introducing a new binary predicate F and by replacing ∀x. p(f(x)) by
∀xy. F (x, y)→ p(y), under the addition of the axiom ∀x ∃y. F (x, y). Again,
uniqueness of y for any given x is not needed. The translated problems can
be shown to be equisatisfiable with the original problems, see [3], but are of
course far from equivalent with the original ones. This makes this transla-
tion into an interesting challenge for our approach. We will elaborate one
example, but the method works in general. Consider the following theorem-
to-prove in Coq.

Parameter dom: Set.
Parameter c:dom.
Parameter f: dom -> dom.
Parameter p: dom -> Prop.
Parameter q: dom -> Prop.
Theorem x: (forall A: dom, p A -> q (f (f A))) ->

(forall A: dom, q A -> p (f A)) ->
(forall A: dom, p A \/ q A) ->
exists B: dom, p B /\ q B.

Although a nice exercise (which, by the way, could be varied by taking
different combinations of iterations (f ... (f A)...); not all of them are
provable!), we prefer to mechanize the proof. However, the current version of
Geo2007 does not generate Coq proof objects. Therefore we use the Prolog
prototype coherent prover [2], which does generate Coq proof objects.
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The above theorem is already in coherent format, but uses a function.
We essentially use the Geo approach for eliminating this function, but the
particular way of refuting the existential conclusion is in the style of [2]. For
reasons of uniformity we maintain Coq syntax. We now state the translated
problem, extending the Coq script above.

Parameter goal: Prop.
Parameter gf: dom -> dom -> Prop.
Theorem y:

(forall A B C: dom, p A /\ gf A B /\ gf B C -> q C) ->
(forall A B: dom, q A /\ gf A B -> p B) ->
(forall A: dom, p A \/ q A) ->
(forall A: dom, p A /\ q A -> goal) ->
(forall A: dom, exists B: dom, gf A B) -> goal.

The system CL from [2], promptly and diligently, generates the proof
object y. Actually, as the translated problem is dealt with in a different sec-
tion, the proof object obtained abstracts from the context. This means that
actually a higher-order version has been proved: for all domains, constants,
functions, propositions and predicates we have the result. This of course
reflects the freedom one has in Tarskian semantics to interpret the syntax
ad libitum. Let us denote the abstracted proof object for y by abstract_y.
We now use the freedom of interpretation to reinterpret goal and gf in or-
der to obtain a proof object for x. To this end we should bind goal to the
conclusion exists B: dom, p B /\ q B and gf to the graph of f, that is,
to fun X Y: dom => f X = Y. This amounts to the following application
term:

apply (abstract_y dom c p q (fun X Y: dom => f X = Y)
(exists X:dom, p X /\ q X)).

(there may be some variation in the order in which the arguments are ab-
stracted).

Of course we do not get the conclusion for free, and the costs are five
proof obligations, one for each assumption in Theorem y. However, the first
three follow trivially from the corresponding assumptions in Theorem x.
Let’s take the first, the other two are even easier. As gf is bound to
fun X Y: dom => f X = Y this proof obligation boils down to:

forall A B C: dom, p A /\ f A = B /\ f B = C -> q C)

which can be automatically inferred from

forall A: dom, p A -> q (f (f A)))

As goal is bound to exists X:dom, p X /\ q X, the fourth proof obliga-
tion is simply existential introduction. The fifth proof obligation is a trivial
consequence of the binding of gf and the reflexivity of equality. All this can
be mechanized in a simple and general way.
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Abstract. Rewriting is an essential tool for computer-based reasoning, both automated and assisted.
It is so because rewriting is a general notion that permits to model a wide range of problems and
provides means to effectively solve them. In a proof assistant, rewriting can be used to replace terms in
arbitrary contexts, generalizing the usual equational reasoning to reasoning modulo arbitrary relations.
This can be done provided the necessary proofs that functions appearing in goals are congruent with
respect to specific relations. We present a new implementation of generalized rewriting in the Coq proof
assistant, making essential use of the expressive power of dependent types and a recently implemented
type class mechanism. The tactic improves on and generalizes previous versions by supporting natively
higher-order functions, polymorphism and subrelations. The type class system inspired from Haskell
provides a perfect interface between the user and such tactics, making them easily extensible.

1 Introduction

By generalized rewriting we mean the ability to replace a subterm t of an expression by another
term t′ when they are related by a relation R. When the relation is Leibniz equality, this reduces
to standard equational reasoning which is allowed in essentially any context1. However, when the
relation is different, the contexts in which a replacement can occur are restricted and one needs to
prove a compatibility lemma about the specific context involved to show that the replacement is
valid. Luckily, one can prove that rewriting in a context is allowed compositionally by combining
compatibility lemmas for each constant.

By using an automatic tactic to find this proof, we can completely forget this boring part of
reasoning and use generalized rewriting to support seemingly extensional reasoning with formulas,
setoids and any other user-defined relations like enriched logical operators (e.g. separation logic
connectives as in [1]).

We will first introduce and review related work in this area (§2) before presenting our new
system (§3) and analysing it (§4), finally concluding in §5.

2 Related Work

Generalized rewriting is a notion that appears in many forms in the literature. For example, it is
at the core of “window inferencing” systems like the one described in [2], that permits to prove
goals by refinement steps each of which being an application of a lemma of the form t R t′ or by
recursively opening “windows”, new subgoals that refine a given subterm of the current goal. We
review the approaches to integrate this idea in type theory.

1 Except if the rewrite involves capture of binders in an intensional type theory like Coq



LCF The idea of combining rewriting tactics appears in the Boyer-Moore and LCF systems, in
particular in Lawrence Paulson’s work [3] in Cambdrige LCF. He designs a set of so-called “conver-
sions”, higher-order rewriting tactics that can be used to implement custom rewriting strategies. He
first focuses on the primitive rewriting tools of the system, β-reduction and Leibniz equality; then
shows how to extend the technique to logical formulae using logical equivalence as the rewriting
relation. In this system, it’s still the user who combines the tactics himself to create a strategy.

NuPRL The step further was to automatically infer the combination of proofs needed to show
that a rewriting is allowed, given compatibility lemmas on the constants involved. This was done
by Basin [4] in NuPRL who also generalizes on the relations involved. He supposes given a set of
lemmas showing the compatibility of operators with respect to some relations and combines them
automatically to build the appropriate proof term when the user tries a rewrite step. In this setting,
it is possible to give multiple signatures to a single constant, for example addition can be given the
signatures:

+ : {x = x′ → y = y′ → x+ y = x′ + y′} + : {x < x′ → y ≤ y′ → x+ y < x′ + y′}
+ : {x ≤ x′ → y < y′ → x+ y < x′ + y′} + : {x ≤ x′ → y = y′ → x+ y ≤ x′ + y′}
+ : {x = x′ → y ≤ y′ → x+ y ≤ x′ + y′}
The first declares that addition is congruent for equality (actually, all objects are) and the

later show that it is monotone for the various combinations of =, < and ≤ on its arguments. The
algorithm must sometimes choose one of these proofs during proof search, as the output relation
is generally not known in advance, and the obvious combinatorial explosion in this setting led
the author to find a heuristic for this choice and implement a partial search. This heuristic is
based on user-provided information on the subrelation property of these relations: = and < are
incomparable here, and both are stronger (smaller) that ≤. Choosing the strongest signature gives
the best experimental results, hence choosing one of the first three signatures over the last three
(implication is covariant for strongness on the right).

The implementation is based again on a set of tactics that are composed on-the-fly to produce
a deterministic rewriting step that makes the goal progress.

Coq Finally, the setoid rewrite tactic developed by Claudio Sacerdoti Coen [5] in Coq (after
an initial implementation by Samuel Boutin already improved upon by Clément Renard) is slightly
different. It differs from Basin’s approach in a number of ways:

– The tactic is complete: instead of using a heuristic when multiple signatures can be selected, the
algorithm tries all possibilities. The rationale for this choice is that goals are not deep enough
in general to warrant a more efficient implementation that avoids the exponential factor. The
tactic does not support subrelations hence it could not use Basin’s heuristic.

– The tactic is semi-reflexive, which means it is separated in two parts, one meta part (written
in ML) that builds a trace for the rewrite using a database of user lemmas and another part
(in Coq) which proves a general theorem showing that any trace gives rise to a correct rewrite.
The trace consists of the applied user lemmas along with information on variance.

– The tactic supports variance natively for asymmetric relations. Signatures are written point-free
(without explicit mention of the objects) from the algebra (deeply embedded, as an inductive
definition) of terms for atomic relations and the combinators ++>, −→, =⇒ for respectively
covariant, contravariant and equivariant relations on arrow types. Symmetry is treated natively
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(arguably for simplicity and user-friendliness) when using the contravariant and equivariant
arrows, as each signature defines an opposite signature which has the same set of associated
morphisms and one need to write only one of them. In comparison, our implementation does not
treat the equivariant arrow but supports the automatic inference of opposite signatures (§3.4).

– The tactic also supports non-reflexive relations, generating subgoals for reflexivity on unchanged
arguments when needed.

Sacerdoti Coen [5] indicates some possible optimizations on the proof search algorithm which is
entangled with the recursive search for rewrites. However, in practice, it is not sufficient to speed
up the trace creation process when the goal is very deep. This system was also somewhat limited
due to the deep embedding in supporting polymorphic or dependent relations and functions.

Rewriting with Leibniz equality Finally, our work can be compared with the existing support for
rewriting with the native equality of the system, for which every construction is congruent (except
when capturing binders). That is, the standard rewrite works in contexts involving let-binders,
pattern-matching or fixpoints and it allows substitution when type dependencies are involved, none
of which is handled here. The current setup of the rewrite tactic is to use the standard rewrite
when rewriting with a Leibniz equality, and use generalized rewriting for other relations.

3 A new tactic for Generalized Rewriting

We will present a new, generalized implementation of generalized rewriting in Coq that blends
better with the system, directly supporting polymorphism, higher-order functions and rewriting
under binders. Our algorithm is a mix of Basin’s and Sacerdoti Coen’s work.

We will split the problem in two parts to get a clearer view on the whole system: a constraint
generation procedure (in ML) and a customizable proof search that is also at the meta-level (in
Ltac), based on type classes [6]. This simplification follows a current trend in the design of proof
search algorithms (e.g. for type inference [7]) to make them more modular: it allows the study and
more practically the independent modification of each part.

The resulting system allows to experiment more efficient proof-search strategies and supports
all the previously-mentioned features, some of which are implemented solely using the extensibility
capabilities of type classes. The tactic uses a set of general-purpose definitions on relations that we
will present now.

3.1 Relations

We will begin by defining a number of standard concepts around relations and introduce a few useful
type classes. We first introduce combinators on relations. We recall that in Coq a homogeneous
binary relation R on a given type A is represented as a function of type A → A → Prop into the
propositions. The inverse (or converse) relation, noted R-1, is easily obtained by flipping the order
of arguments using the flip combinator:

Definition inverse {A} (R : relation A) : relation A := flip R.
Notation ” R -1 ” := (inverse R) (at level 2) : relation scope.

The complementary relation is classicaly defined as a negation:

Definition complement {A} (R : relation A) : relation A := λ x y, R x y → False.
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We can define the pointwise extension of a relation on B to A → B :

Definition pointwise relation {A B} (R : relation B) : relation (A → B) :=
λ f g, ∀ x : A, R (f x ) (g x ).

We use the combinator all to represent universal quantification as a constant application.

Definition all {A} (P : A → Prop) : Prop := ∀ x : A, P x .

Properties We also introduce type classes that formalize the usual notions of reflexivity, symmetry,
transitivity and their duals.

Class Reflexive {A} (R : relation A) := reflexivity : ∀ x, R x x .
Class Irreflexive {A} (R : relation A) := irreflexivity :> Reflexive (complement R).
Class Symmetric {A} (R : relation A) := symmetry : ∀ {x y}, R x y → R-1 x y .
Class Transitive {A} (R : relation A) := transitivity : ∀ {x y z}, R x y → R y z → R x z .

These class declarations introduce overloaded methods that can be used to refer to arbitrary
reflexivity, symmetry or transitivity proofs afterwards. Note that these classes are all indexed by
a type and a value, making essential use of dependent types. See [6] for an introduction to type
classes.

Standard Instances We can already populate the instance database with easy proofs by duality.
All these properties are preserved by inversion, for example:

Instance flip Reflexive ‘(Reflexive A R) : Reflexive R-1 := reflexivity (R := R).

Finaly we define some instances for the standard logical operators. We use the Program
extension [8] to define these instances. In this mode, each undefined field is turned into an obligation
that is automatically proved using a default tactic including firstorder reasoning which is enough
in this case. Implication impl = fun A B : Prop ⇒ A → B is reflexive and transitive:

Program Instance impl Reflexive : Reflexive impl.
Program Instance impl Transitive : Transitive impl.

Both logical equivalence (defined as double implication and denoted by iff or ↔) and Leibniz
equality form equivalences, so they both have Reflexive, Symmetric and Transitive instances.

Subrelations The last interesting concept we introduce is that of subrelations: the inclusion order
on relations. We make it a class so that we can declare logic clauses to dynamically prove it on
given relations.

Class subrelation {A : Type} (R R’ : relation A) : Prop :=
is subrelation : Π x y, R x y → R’ x y .

An essential property of the subrelation relation is its reflexivity:

Instance subrelation refl : @subrelation A R R.

We declare the two following subrelation instances by default:

Instance iff impl subrelation : subrelation iff impl.
Instance iff inverse impl subrelation : subrelation iff (inverse impl).
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3.2 Signatures and morphisms

Contrary to Sacerdoti Coen’s tactic, we chose a shallow embedding of signatures in the dependent
type theory. This has the disadvantage that we cannot write algorithms on the signatures in Coq
itself but we can always do so using the Ltac system. This choice also makes sense because the
unification procedure that is needed later when trying to find constants having a given signature
cannot be deeply embedded easily, nor is it really desirable for efficiency. Another obvious advantage
is that one can design and support new constructions in signatures easily.

Morphisms The central notion of the tactic is that of being a morphism for a given relation R.
We say that an object m is a morphism for a relation R when R m m, that is m is in the kernel
of R, or m is a Proper element of R, using PER terminology2. Note that this definition is very
general and not in any way specialized for functions, i.e. objects of arrow types which we will speak
of as morphisms instead of proper elements, following the terminology used in previous work.

Class Proper {A} (R : relation A) (m : A) : Prop := proper : R m m.

We make this notion a class, hence users can easily add new Proper instances to the type
class database. We make Proper’s type an implicit argument as it can always be infered from the
signature R or the object itself.

Clearly, any element in a type accompanied by a reflexive relation is a proper element for it.
We basically add a new logic clause for the Proper R x theorem saying it is enough to find a proof
of Reflexive A R to solve it.

Instance reflexive proper ‘(Reflexive A R) (x : A) : Proper R x .

Signatures We declare a new parsing scope for relations seen as signatures so that the notations
we use later can be given other meanings in different contexts.

Delimit Scope signature scope with signature.
Open Local Scope signature scope.

Another essential notion is the signature for objects with arrow types. We define a single com-
patibility arrow as a parametric extensionality relation on arrow types for two given relations on
the input and output type.

Definition respectful {A B : Type} (R : relation A) (R’ : relation B) : relation (A → B) :=
λ f g, ∀ x y, R x y → R’ (f x ) (g y).

Naturally, a function f respects respectful R R’ if for any two objects related by R the outputs
of f applied to those are related by R’ . The respectful definition gives a relational version of
respect, which can be applied to two different functions, which will eventually be instantiated by
the same object in a proper statement. As this is a shallow embedding, we won’t be able to match
on applications of respectful in Coq but we will be able to do so via tactics in Ltac.

We obtain the other combinators simply using a set of notations. The respect arrows associate
to the right following the arrow type. The notation ++> for covariance is the naked respectful
definition, R −→ R’ is an abbreviation for R-1 ++> R’ . The equivariant arrow =⇒ is currently an
alias for the covariant arrow.

Notation ” R ++> R’ ” := (respectful R R’ ) (right associativity, at level 55) : signature scope.
2 The standard library of Coq 8.2 uses Morphism instead of Proper
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Notation ” R −→ R’ ” := (respectful R-1 R’ ) (right associativity, at level 55) : signature scope.

We can start declaring Proper instances using these notations for usual operators like logical
negation not : Prop → Prop.

Program Instance contraposed morphism : Proper (impl −→ impl) not.
Program Instance not iff morphism : Proper (iff ++> iff) not.

Unfolding the definitions of respectful, inverse and Proper, we find that the goals boil down to
usual compatibility lemmas, e.g. for the first: ∀ x y , impl y x → impl (¬ x ) (¬ y)

It is also possible to declare parametric instances, which act like Horn clauses in logic program-
ming. Here we assert that every transitive relation is itself a morphism:

Program Instance trans morphism ‘(Transitive A R) : Proper (R −→ R ++> impl) R.

The signature indicates that for every transitive relation R we have R x’ x → R y y’ → R x
y → R x’ y’. Using this morphism instance we will be able to rewrite with any transitive relation.
Before going into a description of the set of Proper instances used to rewrite with the standard
operators, we will present the algorithm that generates these Proper constraints.

3.3 Constraint Generation

The ML algorithm is in charge of finding the subterm to be replaced and generating a proof skeleton
and a set of constraints. Once these are solved (if possible), we will simply substitute the proofs
inside the skeleton to get a complete proof that the rewrite is valid.

We will present the algorithm as a set of inference rules from which we will derive a syntax-
directed variant in a standard way. The algorithm is parameterized by a rewriting lemma ρ of type
∀−→φ ,R −→α t u, i.e. a type whose ultimate codomain is an applied binary relation (note that any
variable in R −→α t u can be bound in −→φ here). The typing context Γ , represents the set of local
hypotheses and the global context, it grows when we go under abstractions. The set of constraints
builds up incrementally in each rule, so there are both input and output sets denoted with ψ
which contain constraints of the form ?x : τ declaring hypothetical objects of a given potentially
incomplete type τ .

The rewriting judgment Γ | ψ ` τ  R
p τ ′ a ψ′ defined in figure 1 means that in environment

Γ, ψ, τ is rewritten to τ ′ with respect to relation R with p a proof of type R τ τ ′ in context Γ, ψ′.
Initially, given a goal Γ ` τ and a rewrite lemma ρ we will want to find a judgment of the form

Γ | ∅ ` τ  impl-1 a

Given a proof of such a rewrite from τ to some τ ’, that is a proof of τ impl-1 τ ′ we can apply it to
the goal to progress to Γ ` τ ′. Dually, we use impl as the top relation when trying to rewrite in a
hypothesis and specialize it with the resulting proof. N.B.: We supposed that relations, hypotheses
and goals were always in Prop, but the construction works just as well in Type, with computational
relations.

Rules The inference rules suppose as given a function type(Γ ,ψ,t) which returns the type of a
given term in a context. All our terms are well-typed so these calls can never fail. The unification
function for a given lemma ρ unifyρ(Γ, ψ, τ) takes as input typing and constraint environments
and a type and tries to unify the left-hand-side of the lemma’s applied relation with the type. It
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Γ | ψ ` τ  R
p τ
′ a ψ′

Unify

unifyρ(Γ, ψ, t) ⇑ ψ′, ρ′ : R t u

Γ | ψ ` t R
ρ′ u a ψ′

Atom

unify∗ρ(Γ, ψ, t) ⇓ τ , type(Γ, ψ, t)

ψ′ , {?S : Γ ` relation τ, ?m : Γ ` Proper τ ?S t}
Γ | ψ ` t ?S

?m
t a ψ ∪ ψ′

Lambda

Γ, x : τ | ψ ` b S
p b
′ a ψ′

S′ , pointwise relation τ S

Γ | ψ ` λx : τ.b S′
(λx:τ.p) λx : τ.b′ a ψ′

App

type(Γ, ψ, f)↑ ≡ τ → σ
Γ | ψ ` f  F

pf
f ′ a ψ′

Γ | ψ′ ` e E
pe
e′ a ψ′′

unify(Γ, ψ′′ ∪ {?T : Γ ` relation σ}, F, E ++>?T ) ⇑ ψ′′′

Γ | ψ ` f e ?T
(pf e e′ pe) f

′ e′ a ψ′′′

Sub

Γ | ψ ` τ  S
p τ
′ a ψ′ type(Γ, ψ, τ) ≡ σ

ψ′ , {?S′ : Γ ` relation σ, ?sub : Γ ` subrelation S ?S′}
Γ | ψ ` τ  ?S′

(?sub τ τ ′ p) τ
′ a ψ′

Pi

unify∗ρ(Γ, ψ, τ1) ⇓
Γ | ψ ` all (λx : τ1, τ2) S

p all (λx : τ1, τ
′
2) a ψ′

Γ | ψ ` Πx : τ1, τ2  S
p Πx : τ1, τ

′
2 a ψ′

Arrow

Γ | ψ ` impl τ1 τ2  S
p impl τ ′1 τ

′
2 a ψ′

Γ | ψ ` τ1 → τ2  S
p τ
′
1 → τ ′2 a ψ′

Fig. 1. Rewriting Constraint Generation - declarative version

may fail (⇓) or succeed (⇑), generating new constraints for the uninstantiated lemma arguments
and an instantiated lemma ρ’ whose type must be of the form R t u for some R, u. The variant
unify∗ρ(Γ, ψ, τ) tries unification on all subterms and succeeds if at least one unification does. The
function unify(Γ, ψ, t, u) does a standard unification of t and u.

Let us now describe each rule:

– Unify The unification rule fires when the toplevel term unifies with the lemma. It directly uses
the generated proof for the rewrite from t to some u with respect to some R.

– Atom This rule applies only when no other rule can apply and no rewrite can happen in the
term. It asserts that the term must remain unchanged for some arbitrary relation ?S during the
rewrite, which is witnessed by a Proper proof. Typically, these constraints are either generated
for unmodified arguments of a function and the Proper proof is solved by a reflexivity proof
for the appropriate relation or they are generated for a function itself and the constraints get
instantiated by user-provided proofs.

– Lambda To rewrite under an abstraction we simply rewrite the body inside the enriched
context. The resulting proof can be extended pointwise to a closed proof in the original context
by simply enclosing it in a λ.

– App We rewrite under an application by rewriting successively in the function and the argu-
ment. Here we assert that the rewrite relation for the function must unify with E ++>?T for
some new relation ?T to ensure that the constraint on the argument corresponds to the expected
relation for the function argument. The resulting proof is a combination of the respectful proof
for the function and the proof found for the argument which builds related results in ?T .

– Sub We add a subsumption rule to the system which allows to assign multiple relations to a
single rewrite. The subrelation type class models a lattice of relations ordered by inclusion. It
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allows for example to see that subrelation (pointwise relation τ S) (eqτ ++> S) and use a rewrite
under an abstraction as a premise of the App rule.

– Pi This rule is an administrative step to rewrite inside the codomain of a dependent product,
knowing that we can’t rewrite in its domain. It translates the product into an application of
the combinator all whose Proper instances will be presented later.

– Arrow The rewrite can happen in the domain only in non-dependent products. In this case we
use the impl combinator instead.

Algorithm We must now derive an algorithm from this declarative specification of the system. To
do so, we must eliminate the subsumption rule which is not syntax directed. The side conditions
of the other rules are sufficient to ensure determinism otherwise. As the subrelation class is user-
driven, we will only make assumptions on the associated set of instances. First, the relation must
be transitive to be able to compress a stack of Sub applications into a single one. It must also be
closed under pointwise relation to go through the Lambda rule. The last problem is with App as
it forces the relation on the function to be of a particular shape: we must simply change the rule
to integrate Sub in the first premise:

Γ | ψ ` f  F
pf
f ′ a ψ′ type(Γ, ψ, f)↑ ≡ τ → σ

Γ | ψ′ ` e E
pe e
′ a ψ′′

ψ′′′ , {?T : Γ ` relation σ, ?sub : Γ ` subrelation F (E ++> ?T )}
Γ | ψ ` f e ?T

?sub f f ′ pf e e′ pe
f ′ e′ a ψ′′ ∪ ψ′′′

AppSub

Note that we explicitly take the head-normal form of the function’s type to be able to generate
the constraints and we assume that this arrow is not dependent.

With these changes, we can directly extract an algorithm rew(Γ , ρ, τ) directed by the type τ ,
which always succeeds and returns a tuple (ψ,R, τ ′, p) with the output constraints, a relation R, a
new term τ ′ and a proof p : R τ τ ′. In case no rewrite happens, we will just have an application
of Atom. Obviously, we can decorate the actual algorithm to count the number of successful
unifications and fail if nothing was rewritten. We can use this to stop at the first rewrite too.

We now have the skeleton of a proof with holes and just need to solve the constraints to complete
the proof. We assume here that we can mark constraints in the constraint set to indicate if they
come from the unification of the lemma or as part of the algorithm itself. We will solve only the
latter and leave the former for the user to prove.

3.4 Resolution

The proof-search problems generated by the rew algorithm are sets of constraints of the form
Proper A (R1 ++> · · · ++> Rn) m or subrelation A R1 R2, where A,m are closed terms but the
Ri’s are open. The existential variables appearing in them may of course be shared across multiple
constraints, notably because of the App rule.

The Ri’s may actually be arbitrary relations, and we want to be able to support some particular
signature constructions automatically, notably the inverse combinator. We also need to actually
implement a satisfying subrelation relation and support other features like higher-order morphisms
and partial applications. To handle all these, we will write logic clauses that allow to prove Proper
and subrelation as class instances. We will also extend the proof-search algorithm using a few Ltac
tactics to handle more complex resolution steps. All of this is defined in a standard Coq script
that we present now.
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As seen before, we can declare generic morphisms for standard polymorphic combinators that
preserve compatibility, e.g. for flip:

Program Instance flip proper ‘(mor : Proper (A → B → C ) (RA ++> RB ++> RC ) f ) :
Proper (RB ++> RA ++> RC ) (flip f ).

For higher-order morphisms, we must show how applications to pointwise equivalent functional
arguments are related. For example, to show that existential quantification lifts logical equivalence
we have to prove:

Instance ex iff mor : Proper (pointwise relation A iff ++> iff) (@ex A).

The statement of this proof unfolds to: (∀ x , P x ↔ Q x ) → (∃ x , P x ) ↔ (∃ x , Q x ). Using
this instance we can now rewrite under existentials with the equivalence relation, e.g:

Goal Π A P Q, (∀ x : A, P x ↔ Q x ) → (∃ x, ¬ P x ) → (∃ x, ¬ Q x ).
Proof. intros A P Q H HnP. setoid rewrite ← H. assumption. Qed.

We won’t detail here the various proper declarations for standard operators and classes like
PER, Equivalence, etc... they can be found in the standard library modules. We will just detail the
specific ones that allow to support some interesting features.

Partial applications During constraint generation we build signatures for applications starting at
the first rewritten argument as we generate invariance constraints for the largest invariant subterms.
This allows us to support parametric morphisms very easily as we are generally not interested in
rewriting in the first few type parameters. However, this interacts with non-parametric morphisms
as well. Suppose we have P → Q and rewrite with H : Q ↔ Q’. The generated constraint will be
of the form Proper (iff ++> inverse impl) (impl P). However, we generally declare our morphisms
for complete applications, e.g.: Proper (iff ++> iff ++> inverse impl) impl. Hence we need a way to
derive the former from the latter. It suffices to declare the following instance whose application will
generate a metavariable for the unknown relation on the argument.

Instance partial ‘(Proper (A → B) (R ++> R’ ) m) ‘(Proper A R x ) : Proper R’ (m x ) | 4.

We give a low priority to this instance so that it won’t be used except if no other Proper is
declared on m x .

Subrelations We have seen that logical equivalence is smaller than implication or its inverse. This
means that any morphism that ends with iff can be viewed as a morphism producing impl-related
arguments or its dual. We can actually make this even clearer by proving the subrelation instance
for respect arrows. Classicaly, the arrow is contravariant for the subrelation relation on the left and
covariant on the right:

Instance respectful subrelation ‘(subrelation A R2 R1, subrelation B S1 S2) :
subrelation (R1 ++> S1) (R2 ++> S2).

We mentionned previously that for the constraint generation algorithm to be sound and com-
plete with respect to the declarative presentation, subrelation had to be transitive. We will not add
anything like a generic recursive transitive subrelation instance as that would render proof-search
useless: it would always loop if we tried to search for an invalid subrelation constraint. Instead
transitivity should be proved for the specific set of instances that are declared at some point. We
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can assure that the set of instances declared in the library is transitive: no two rules could form
the premises of a non-trivial use of transitivity.

We also mentionned that pointwise relation had to be congruent for subrelation. Indeed it is a
covariant morphism for it:

Instance pointwise sub : Proper (subrelation ++> subrelation) (@pointwise relation A B).
Instance subrelation pointwise A ‘(sub : subrelation B R R’ ) :

subrelation (pointwise relation A R) (pointwise relation A R’ ).

These instances allow us to bootstrap the system in a natural way: we can now rewrite inside
signatures and under pointwise relation, by showing that respectful is a morphism for subrelation as
well. We can prove compatibility with subrelation and also relation equivalence (defined as double
inclusion of the relations and denoted by =R) of many of the combinators we have seen like inverse,
complement and even Proper itself:

Instance morphism proper A : Proper (relation equivalence ++> @eq ++> iff) (@Proper A).

It follows that if we can find a Proper instance for m using signature R2 and a subrelation R1

of R2 then m is also a proper element of it: this is exactly what is internalized by the Sub rule.
However, we will not directly integrate the rule as it should only be applied once at the top of a
search.

Lemma subrelation proper ‘(Proper A R1 m, subrelation A R1 R2) : Proper R2 m.

Indeed, this lemma is way too general to introduce it to the Proper instance search: it could be
applied endlessly. Instead, we construct a tactic that restricts its use to the top of the goal when
some flag apply subrelation is set.

CoInductive apply subrelation : Prop := do subrelation.
Hint Extern 5 (@Proper ) ⇒ match goal with [ H : apply subrelation ` ] ⇒
clear H ; class apply @subrelation proper end : typeclass instances.

We add this tactic to the instance database to apply it when the goal is a Proper. Thanks to
this control, we can do all the logic programming we want inside Coq using Ltac and let the user
customize the proof search in the same way.

Dual Morphisms Finally, we can construct a tactic to handle the signatures involving inverse in
the same way. First, we observe that a term m is a Proper element for a relation R-1 if and only
if it is for R.

Program Instance proper inverse ‘(Proper A R m) : Proper R-1 m.

The goal is to make it possible for the user to declare a morphism for R only and automatically
infer that it is also a morphism for R-1 or any relation equivalent to it with respect to the equational
theory generated by:

Lemma inverse invol A (R : relation A) : R-1-1 =R R.
Lemma inverse arrow A (R : relation A) B (R’ : relation B) : (R ++> R’ )-1 =R R-1 ++> R’-1.

Of course R-1 might not be in any kind of normal form: we want to push the inverse relation
as far as possible inside the signature. Our strategy is to expand every part of a signature to
applications of inverse and add subrelation instances to relate all the signatures in the produced
equivalence class. We introduce a new class to normalize signatures, resolution will be based on the
first one (m).
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Class Normalizes {A : Type} (m m’ : relation A) : Prop := normalizes : m =R m’-1.

Our strategy works by adding inverse everywhere in the signatures, going through arrows.

Lemma norm1 A R : @Normalizes A R (inverse R).
Lemma norm2 ‘(Normalizes A R0 R1, Normalizes B U0 U1) : Normalizes (R0 ++> U0) (R1 ++>

U1).

We implement the strategy by a tactic that figures out if we have an arrow or an atomic type
at the head and applies the appropriate lemma. Once we have resolved the inverse signature we
can use subrelation to prove that the signature is related to the one declared by the user.

4 Analysis

4.1 Quantitative analysis

The constraint generation algorithm is clearly linear in the size of the rewritten term, so it has
got a minor influence on the performance of the whole tactic. On the other hand, the proof search
strategy is a (bounded) depth-first search using the instance database whose performance tends to
be close to linear in the size of the constraints, when no backtracking is needed. We must always
take care that the instances don’t loop, that is why we control precisely the application of some
lemmas.

The tactic has much better performance than the one by [5] on deep goals, as depth-first
search often allows to prove goals directly without much backtracking. In practice the tactic gives
immediate responses even on large goals. It should be noted that this tactic unlike the former only
returns the first solution of the constraints. We leave the generalization of the search procedure for
future work. Regarding the proof term size it is of the order of the rewritten term plus the proof
terms for the constraints which are again generally linear in the size of their type.

4.2 Implementation & experiments

The tactic presented here is already available as part of Coq 8.2 where it replaces the previous
one [9]. The implementation has been tested on the standard library of Coq as well as all the user
contributions of Coq (http://coq.inria.fr/contribs-eng.html) which contains large projects
using setoids such as CoRN and CoLoR. It is not clear whether the performance gains on these later
examples come from the new setoid rewrite implementation or some other improvement over
previous versions of Coq but the standard library’s times on setoid-intensive files have dropped
significantly (−30%). Also, some other developments that could not be handled previously clearly
benefit from the improved performance, e.g. the one done by Benton and Tabareau [1] which
provided the impetus to reimplement the whole tactic.

To speed up proof search of instances, we use an enhanced discrimination net that can handle
existentials contrary to the one already used in the eauto tactic of Coq. We also added a de-
pendency analysis between subgoals to perform so-called green cuts in the search tree when two
subgoals become independent (i.e. do not share existential variables).

4.3 Refinements

The tactic extends the previous one by supporting the at option which allows to select which
occurences of the lemma should be rewritten, in a left-to-right traversal of the term. It should be
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noted that the semantic of the tactic is different from the standard rewrite’s in that it tries to
unify the lemma with each subterm independently and in its local context instead of doing a single
unification and rewritting all subterms that match the resulting instantiated lemma. Typically our
semantics allows to rewrite with a general lemma and select deep occurences in the goal without
having to mention the term, e.g. consider:

Goal ∀ x y z : nat, (x + y) + z = y + (x + z ).

If we want to rewrite with the commutativity lemma for addition, we get four different possible
instantiations that can be selected with at. This new semantic allows finer-grain control over
occurences but it is also essential to be able to rewrite under binders, where unification can capture
variables introduced inside subterms. Let’s consider the following goal:

Goal ∀ H : (∀ x, x × 1 = x ), ∃ x, x × 1 6= 0.

To rewrite under the existential quantifier, we must apply H to x itself, hence do unification in
the local context.

5 Conclusion

We have presented a new tactic for generalized rewriting in Coq, based on a constraint generation
algorithm generating type class constraints to be solved by a generic but customizable instance
search. The tactic extends previous ones in a number of directions, providing support for arbitrary
polymorphic relations and morphisms, subrelations, automatic dualization of signatures and rewrit-
ing under binders. The new architecture allows for far greater extensibility via Ltac and for finer
grain control on performance through its modular implementation. Finally, the choice of a shallow
embedding and use of type classes allows easy integration inside user developments.
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Abstract

Descente infinie is a type of inductive reasoning that allows an instance of a goal that occurs
in a goal-directed (backward reasoning) proof process to assume the role of a hypothesis later in
the proof, without the explicit application of an induction principle or rule. This works only if
the instance used as hypothesis is smaller than the original, with respect to a well-founded order.
Unlike explicit induction, which is the inductive technique of choice in most mainstream proof
assistants, including Coq, proofs by descente infinie do not require guessing (or even creating) an
adequate induction scheme at the beginning of the proof process and are thus more intuitive, and
more amenable to automation.

In this paper, we argue that proofs by descente infinie are straightforward to implement in
Coq, and thus easier to produce than their explicit induction counterparts. In addition, we present
our ongoing attempt at building an automated inductive tactic, and discuss some preliminary
experiments.

1 Introduction

In automated theorem proving, the term induction denotes a set of proof techniques that allow the
use of not yet certified information as a means of validating a potentially infinite set of formulas.
In fact, according to [5, 6], the research community is divided into the two schools of explicit and
implicit induction, of which the former represents the established mainstream, which excels in the
most powerful theorem provers today, including Coq [3]. Although there is no generally accepted
characterization of the two paradigms, the descente infinie induction principle typically falls in the
implicit induction category, and is surveyed in [14, 15].

Explicit induction realizes the familiar idea of inductive theorem proving using induction axioms.
In accordance with this view, one reason to call this paradigm “explicit” is that in the underlying
inference systems every cyclic argument must be made explicit in a single inference step by applying
a so-called induction principle. Apart from generating base cases, this inference step joins induc-
tion hypotheses and conclusions in induction step formulas. Moreover, it explicitly guarantees the
termination of the cyclic argument by a sub-proof of the well-foundedness of the induction ordering
resulting from the step formulas.

In contrast, implicit induction represents a type of inductive reasoning whereby no induction prin-
ciple is explicitly applied. The survey [15] differentiates between proof by consistency [8], based
on the Knuth-Bendix completion procedure, and descente infinie (also called lazy induction in [12]),
which is an induction principle discovered by the ancient Greeks, and reinvented by Fermat in the
17th century. Intuitively, the descente infinie principle follows the reasoning patterns of the working
mathematician in realizing an inductive argument. The experienced mathematician usually starts with
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a conjecture, which he simplifies by case analysis, and applications of axioms and rules available in
the theory at hand. When he realizes that the current goal has become similar to an instance of the
conjecture, he applies the instantiated conjecture just like a lemma, but keeps in mind that he has ac-
tually applied an induction hypothesis. Finally, he searches for some well-founded ordering in which
all instances of the conjecture he has applied as an induction hypothesis are smaller than the original
conjecture itself. The advantage of the descente infinie principle, as compared to explicit induction, is
that the mathematician is not required to commit to an induction principle or scheme, at a point in the
proof process when the success of such a decision is uncertain.

To illustrate the difference between explicit induction and descente infinie, let us consider the
simple (and probably ubiquitous) example of proving that ∀n : nat, n + 0 = n. In an explicit induc-
tion proof, we first choose an induction scheme, of the many induction schemes available for natural
numbers. In this simple case, it is obvious that the one we need to pick is ∀P : nat → Prop,P0→
(∀n,Pn→ P(Sn))→ ∀n, Pn. However, in more complicated proofs, the correct choice of an in-
duction scheme may not be equally obvious at this stage in the proof process. Now, by instantiat-
ing P with the conjecture at hand, we derive the following two proof obligations: 0 + 0 = 0, and
∀n, n + 0 = n→ Sn + 0 = Sn. Both these proof obligations are now easily discharged using the
definition of addition for natural numbers and the injectivity of the successor constructor.

In contrast, a proof by descente infinie usually starts with performing case analysis on the conjec-
ture, without giving any consideration to any inductive reasoning that may be required later. Since
n may be either 0, or the successor of some other number n1, case analysis yields the following two
proof obligations: 0 + 0 = 0, which is immediately discharged, and Sn1 + 0 = Sn1, which can be
further simplified, using the definition of addition, into n1 + 0 = n1. The current proof obligation is
now recognized as an instance of the original conjecture and, since n1 is a subterm of n, and thus
smaller with respect to a well-founded order, it can be concluded at this point, by the principle of
descente infinie, that the original conjecture holds. We note that in this entire proof process we did
not have to make an early commitment to an induction principle whose success was uncertain. This
important property contributes to simpler inductive proofs, and makes a descent-infinie-based tactic
be a valuable addition to an interactive proof assistant.

At this point, the experienced proof assistant user would probably argue, quite legitimately, that
the validity of the descente infinie principle needs to be established first. In Coq, however, this result
comes almost for free. Let us remember that the proof process consists of transitioning through a
sequence (or rather a tree) of subgoals, each transition being the result of applying a tactic. Moreover,
each subgoal has a corresponding partial proof term which becomes further instantiated with each
transition. Whenever we encounter a repeating subgoal, by inspecting its proof term, we can identify
the sub-term that was “filled in” by the sequence of tactics that were applied between the two repeti-
tions. As we will show later in the paper, this subterm can be transformed into a recursive function
definition that would reconcile the two repeating goals, making the first occurrence of the repeating
goal act as an induction hypothesis for the second occurrence. Importantly, the well-foundedness
check is carried out automatically by Coq’s typechecker. Thus, in Coq, descente infinie becomes a
method of manipulating proof terms into recursive definitions that reconcile repeating goals, rather
than a set of axioms or inference rules.

We are aware that induction automation is an ample task, which has been investigated extensively
with mixed results (for a detailed overview, cf. [14]). However, for the time being, our objective is
rather modest: automatically solve simple inductive goals faster than they would be solved by hand.
In that respect, our paper makes the following contributions:

• A methodology of inductive reasoning in Coq, that does not require early commitment to an
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induction principle, and a discussion on the challenges of implementing such a methodology.

• A naı̈ve automation algorithm for simple inductive proofs.

As related work, we mention [1, 2, 13] which discuss the use of descente-infinie-based methods
for automated theorem proving, and [9,11], which apply a similar principle to co-inductive reasoning.
The soundness of the descente infinie principle is presented in [4].

The rest of the paper is organized as follows. Section 2 discusses by means of example two ways
of implementing descente infinie reasoning in Coq, and argues that this type of reasoning may lead to
shorter, more goal-oriented, and more expressive proofs in certain cases. Section 3 discusses various
aspects of the use of tactics in connection with descente infinie reasoning. Sections 4 and 5 present a
simple automation algorithm, and the corresponding experimental results. Section 6 concludes.

2 Illustrative Examples

In this section, we argue by means of examples, that proofs by descente infinie are in fact more
intuitive and straightforward to produce as compared to their explicit induction counterparts.

2.1 A Proof Repair Scenario

First, let us consider a proof repair scenario. Consider the following attempt to produce a proof of the
le Sn le theorem that is available in the Arith library:

Coq < Lemma le_Sn_le: forall n m, S n <= m -> n <= m. (* original goal *)
1 subgoal

============================
forall n m : nat, S n <= m -> n <= m

le_Sn_le < intros n m H. (* first instance of repeating goal *)
1 subgoal

n : nat
m : nat
H : S n <= m
============================
n <= m

le_Sn_le < destruct H ; constructor ; [constructor|].
(* second instance of repeating goal *)

1 subgoal

n : nat
m : nat
H : S n <= m
============================
n <= m

In this attempt, we aim to model the proof search process of the working mathematician1, which
would typically start with performing case analysis on the conjecture to be proven, followed by sim-
plifications that would either discharge the goal at hand, or would produce a goal similar to some

1We assume that the working mathematician has just formulated the ≤ relation and is in the process of exploring its
properties; he has not yet discovered its transitivity.
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goal encountered before in the proof process. This is indeed the case in the proof attempt given
above. After the case analysis and simplification performed by the sequence of tactics destruct H ;
constructor ; [constructor|], the resulting goal is identical to its predecessor. At this point, we
notice that hypothesis H in the last subgoal is in fact a subterm of hypothesis H of the second subgoal,
and thus smaller w.r.t. an adequately defined well-founded order. Hence, the repeating goal signals
the potential of applying an induction principle and completing the proof. This, however, cannot be
accomplished directly in Coq.

A less direct approach would be to repair the proof. Let us first examine the current proof term.

le_Sn_le < Show Proof.
LOC:
Subgoals
1 -> forall n m : nat, S n <= m -> n <= m
Proof: fun (n m : nat) (H : S n <= m) =>

match H in (_ <= n0) return (n <= n0) with
| le_n => le_S n n (le_n n)
| le_S m0 H0 => le_S n m0 (?1 n m0 H0)
end

The fact that the proof had a repeating goal actually means that the type of the entire match...end
expression must be the same as the type of the expression (?1 n m0 H0), embedded in the second
arm of the match. This leads immediately to the idea of changing the proof term from a function
definition to a definition of a recursive function, whose name can then be used as the value of the ?1
meta-variable. Thus, we can produce a new proof term by cutting and pasting the current proof term,
and then performing the following small changes: (a) transform the function heading so as to reflect
a recursive function definition, and (b) replace the ?1 meta-variable with the recursive function name.
The new proof term would solve the original goal completely, as shown below.

le_Sn_le < Restart.
1 subgoal

============================
forall n m : nat, S n <= m -> n <= m

le_Sn_le < exact (
fix le_Sn_le (n m : nat) (H : S n <= m) {struct H} :=

match H in (_ <= n0) return (n <= n0) with
| le_n => le_S n n (le_n n)
| le_S m0 H0 => le_S n m0 (le_Sn_le n m0 H0)
end).

Proof completed.

This proof repairing trick implements in effect a proof by descente infinie. It is the user’s responsibility
to identify the decreasing argument in the {struct ...} declaration. Nevertheless, Coq is capable
of verifying automatically that the recursive application is well-founded, and as a result, it accepts the
proof when the user types the command Save.

A more elegant approach can be produced if the user suspects that a proof by descente infinie
might occur later. In such a case, the conclusion of the current goal may be “saved” as a hypothesis
using a Coq command of the following form:
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le_Sn_le < refine (fix le_Sn_le n m (H:S n <= m) {struct H} := _).
1 subgoal

le_Sn_le : forall n m : nat, S n <= m -> n <= m
n : nat
m : nat
H : S n <= m
============================
n <= m

The original conclusion is now available as the hypothesis le Sn le2. Then, the proof proceeds as
usual, with case analysis and simplification, and when the repeating goal is encountered, the “saved”
hypothesis can be readily applied to solve the goal. Obviously, the proof can only be saved if the appli-
cation of the saved hypothesis is well-founded. Coq 8.2 provides even more support for such proofs,
in the form of the fix tactic, and the Guarded command, leading to the following implementation of
a proof by descente infinie.

Coq < Lemma le_Sn_le: forall n m, S n <= m -> n <= m.
1 subgoal

============================
forall n m : nat, S n <= m -> n <= m

le_Sn_le < fix 3; intros n m H;
destruct H as [|n0 H]; constructor ;
[constructor|apply le_Sn_le;exact H].

Proof completed.

le_Sn_le < Guarded.
The condition holds up to here

In the above proof, fix 3 “saves” the current conclusion as a hypothesis, by creating a partial
proof term in the form of a recursive definition whose third argument (later identified as H due to the
intros tactic) is expected to decrease. The Guarded command verifies that the application of the
saved hypothesis is well-founded, a condition that could only be checked by attempting to save the
proof in previous versions of Coq.

At this point, there are two aspects we would like to emphasize. Firstly, while the use of the
fix tactic makes the implementation of proofs by descente infinie more elegant, it still has the ma-
jor drawback that it requires advance knowledge of the repeating goal, and its decreasing subterm.
Nevertheless, as the next two examples illustrate, even under such circumstances, proofs by descente
infinie would still be easier to produce, since they do not require the existence of an adequate induc-
tion principle. Secondly, the “proof-repair” trick used in our first proof attempt is easily automatable,
and can be performed systematically by a procedure that could be used as a basis for an automated
induction tactic.

2.2 Goal-Directedness

The example above, while simple enough to showcase the relationship between a proof attempt with
a repeating goal, and its corresponding partial proof term, it is also simple enough to be solved by
the explicit induction tactic available in Coq. In contrast, the next two examples showcase goals

2Still, the user must remember to apply this hypothesis only to a subterm of H.
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whose descente infinie-based proofs are simpler, and arguably, more goal directed than their explicit
induction-based counterparts.

First, consider the following inductive predicate that holds if its argument is an even number.

Inductive even : nat -> Prop :=
| e0 : even 0
| eS : forall n, even n -> even (S (S n)).

Consider now proving the goal:

∀n : nat, evenn∨¬ evenn.

Again, we use fix 1 to “save” the conclusion as an inductive hypothesis. Then, we perform case
analysis and simplification.

even_or_not_even < fix 1; intros [|n1] ;
[ left; constructor |
destruct n1 as [|n2] ;
[ right ;
intro H ; inversion H | ] ].

1 subgoal

even_or_not_even : forall n : nat, even n \/ ˜ even n
n2 : nat
============================
even (S (S n2)) \/ ˜ even (S (S n2))

At this point, it is time to use the induction hypothesis.

even_or_not_even < destruct (even_or_not_even n2).
2 subgoals

even_or_not_even : forall n : nat, even n \/ ˜ even n
n : nat
H : even n2
============================
even (S (S n2)) \/ ˜ even (S (S n2))

subgoal 2 is:
even (S (S n2)) \/ ˜ even (S (S n2))

even_or_not_even < Guarded.
The condition holds up to here

We note that the current variable n2 is a subterm of variable n that appeared in the first subgoal, and
thus the use of the induction hypothesis is well-founded. This condition is verified with the command
Guarded. From this point, the proof can be completed by case analysis and simplification, using the
sequence of tactics

left;constructor;exact H. right;intro H0;apply H;inversion H0;trivial.

Note that the proof is, to a great extent, goal directed, in the sense that at each step, the most obvious
choice of a tactic is made.

Now, let us consider an explicit induction proof for the same goal. One way to achieve this is to
create a new induction scheme, materialized in the following theorem:
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∀P : nat→ Prop, P0→ P1→ (∀n, Pn→ P(S (Sn)))→ (∀n, Pn).

And another way to achieve the same objective is to prove the following auxiliary lemma first:

∀n,(¬even(Sn)→ evenn)∧ (¬evenn→ even(Sn)).

Both explicit induction solutions require advance knowledge of how the goal will turn out after per-
forming all the simplifications and case analysis steps, in order to either select an adequate induction
scheme, or invent an adequate lemma. This knowledge cannot be derived solely from the information
available at the point when the knowledge is required. Thus, the user will have to try several proof
paths to acquire this knowledge, and then undo certain proof steps to return to the proof state where
the knowledge is applicable. In this sense, the explicit induction proof is not goal-directed, and in
fact, a lot more cumbersome than its descente infinie counterpart.

For the next example, let us consider two more inductive definitions.

Inductive m3: nat -> Prop :=
| m30 : m3 0
| m3S : forall n, m3 n -> m3 (S (S (S n))).

Inductive m6: nat -> Prop :=
| m60 : m6 0
| m6S : forall n, m6 n -> m6 (S (S (S (S (S (S n)))))).

Yet again, let us consider a conjecture that is not provable by explicit induction in a goal-directed
fashion.

∀n : nat,evenn → m3n → m6n.

Similar to the previous example, we proceed by case analysis and simplification, choosing at each
step the most obvious tactic for the current goal. This is simulated by the application of the following
compound tactic.

multiples < fix 3 ; intros n H1 H2; destruct H2 as [|n H2];
[ constructor
| destruct H2 as [|n H2];
[ inversion_clear H1 as [|? H]; inversion H
| constructor; inversion_clear H1 as [|? H];
inversion_clear H as [|? H1];
inversion_clear H1 ] ].

1 subgoal

multiples : forall n : nat, even n -> m3 n -> m6 n
n : nat
H2 : m3 n
H : even n
============================
m6 n

At this point, the induction hypothesis applies, and the tactic apply multiples; trivial solves
the goal.

As in the previous example, an explicit induction proof is more difficult to achieve. A relatively
simple solution is to use the induction principle implemented by the lt wf ind theorem available in
the Omega library. However, the commitment to this induction principle must be made early on in the
proof process, well before the success of this approach becomes obvious.
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3 A Descente Infinie Tactic

The central step of our proof method is a proof term transformation procedure that introduces a recur-
sive function capable of creating a well-founded induction hypothesis. We shall describe this step by
taking a closer look at the even or not even example that has already been discussed in the previous
section. However, unlike in the previous attempt to prove this goal, we no longer save the current con-
jecture into an induction hypothesis at the beginning of the proof. Instead, the induction hypothesis
will be derived lazily, when needed, from the current partial proof term.

Consider the interaction with the Coq system given in Figure 1, which mimics the state of our
automated proof process after applying a series of case analysis and inversion steps (the algorithm
applies these steps non-deterministically, and at this point it is only important to understand that this
is a possible state in the proof process). To make the text easier to follow, we have augmented the
code in the figure with Coq-style comments, enclosed in (*· · ·*).

Let us analyze the current state of the proof process. The current proof term contains the meta-
variable ?1 (on the third line from the bottom) that corresponds to the current sub-goal. We note that
this variable occurs inside two nested match constructs. The crucial property of a match construct is
that it isolates a subterm of a given term, and thus creates an opportunity for a well-founded application
of an induction hypothesis. However, an induction hypothesis must exist first. This can be achieved
by a proof transformation whose result is given in Figure 2. The match construct is wrapped inside
a recursive definition, called circ in the figure. The recursive argument of circ has the same name
as the matched variable, and the well-founded application of the induction hypothesis can now be
produced by applying circ to the subterm of the matched variable. This expression must now be
offered as an argument to ?1.

Our descente infinie (DI) tactic takes a numeric argument k, called the depth, and applies this
proof term transformation procedure to the kth closest match construct. When the depth is 1, the
tactic applies the transformation to the innermost match and produces the proof term and subgoal
given in Figure 2 (again, the interaction mimics the result).

Our tactic produces a transformed proof term. To illustrate its effect, we restart the proof process,
and submit the transformed proof term via the refine tactic. For the sake of brevity, in the code above
we have omitted the proof subterm corresponding to the case when n1 is 0, since it is not changed by
this transformation.

Let us take a closer look at the differences produced by this transformation in the new proof term.
We notice that the innermost match is now wrapped inside a recursive definition named circ. The
argument to this definition is n1, identical to the matched variable. This makes n2 a subterm of n1,
and thus the recursive call (circ n2) becomes a well-founded induction hypothesis. This expression
is added, with the name IH as an argument to the meta-variable (underscore) representing the current
subgoal. To “close the loop”, the entire recursive definition of circ is applied to the outer variable
n1, which in effect restores the matched expression of the innermost match construct. In the resulting
subgoal, IH is now available and ready to be applied.

While the IH tactic is the product of a sound procedure, it is in fact not the one suitable for solving
the conjecture. To produce the needed induction hypothesis, we need to apply the transformation
procedure to the outermost match, by invoking the DI tactic with a depth of 2. This will result in the
subgoal:

n2 : nat
IH : even n2 \/ ˜ even n2
============================
even (S (S n2)) \/ ˜ even (S (S n2))

8



Figure 1 A Coq Interaction
Coq < Lemma even_or_not_even: forall n, even n \/ ˜ even n.
1 subgoal

============================
forall n : nat, even n \/ ˜ even n

....... (* steps omitted *)

n2 : nat
============================ (* current subgoal *)
even (S (S n2)) \/ ˜ even (S (S n2))

even_or_not_even < Show Proof. (* prints the current proof term *)
LOC:
Subgoals
1 -> forall n2 : nat, even (S (S n2)) \/ ˜ even (S (S n2))
Proof: fun n : nat =>

match (* further from the goal, DI tactic arg := 2 *)
n as n0
return (even n0 \/ ˜ even n0)

with
| 0 => or_introl (˜ even 0) e0
| S n1 =>

match (* closest to the goal, DI tactic arg := 1 *)
n1 as n01
return (even (S n01) \/ ˜ even (S n01))

with
| 0 =>

or_intror (even 1)
(fun H : even 1 =>
match
H in (even k)
return
match k with
| 0 => True
| 1 => False
| S (S _) => True
end

with
| e0 => I
| eS _ _ => I
end)

| S n2 => (fun _ : nat => ?1 n2) n2
end (* ˆˆ Metavariable for current subgoal *)

end

which can be easily discharged by case analysis and simplification, as already seen in the previous
section.

This systematic partial proof term transformation is implemented in OCaml, and currently stati-
cally linked in the Coq source tree.
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Figure 2 Simulation of DI Tactic
even_or_not_even < Restart.
1 subgoal

============================
forall n : nat, even n \/ ˜ even n

even_or_not_even < refine ( (* result of proof transformation *)
fun n : nat =>

match n as n0 return (even n0 \/ ˜ even n0) with
| 0 => or_introl (˜ even 0) e0
| S n1 =>
(fix circ n1 := (* recursive definition wrapper *)
match n1 as n01 return (even (S n01) \/ ˜ even (S n01)) with
| 0 => (* omitted, identical to corresp. subproof in Fig 1 *)
| S n2 => (fun n2 IH => _) n2 (circ n2)
end) n1 (* ˆˆˆˆˆˆˆ induction hypothesis *)

end). (* ˆˆ restore original argument of match *)
1 subgoal

n2 : nat
IH : even (S n2) \/ ˜ even (S n2)
============================
even (S (S n2)) \/ ˜ even (S (S n2))

even_or_not_even < Guarded.
The condition holds up to here

4 Towards an Automated Induction Tactic

A simple automation idea would be to implement the DI procedure as a standalone tactic, and then add
it as an external hint to a hint database, so that it can be used in conjunction with auto. However, this
is not possible, since (at least to our knowledge), the Coq system does not allow changing the partial
proof term on the fly. Nevertheless, our current automated tactic, implemented in Ocaml, uses a
similar approach. Non-deterministic proof steps are specified via a set of rules, and the tactic employs
an exhaustive search process of limited depth, which backtracks over all the choices of case analysis,
simplification, rewriting, generalization, and generation of induction hypothesis at all possible nesting
depths. For each new subgoal, precedence is given to “cheaper” tactics, that is, tactics that have a
higher chance of solving the goal at hand in fewer steps. One such situation is when a repeating
subgoal is detected (i.e. a subgoal that is similar to one encountered before), in which case the proof
term transformation procedure creates an induction hypothesis that can be immediately applied to
solve the goal.

5 Experiments

In its current stage of development, our tactic implements the repeated goal detection and the proof
transformation step described in Section 3. However, it only performs a restricted form of rewriting,
and no generalization. Table 1 lists several of the interesting inductive lemmas that can be proven by
the tactic, together with the search depth that is needed to discover the proof, and the time taken. The
experiment was conducted on a 2.4GHz linux machine.

Figures 3 and 4 show two of the proof terms produced by our tactic. We note that in both cases,
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Lemma depth time(seconds)
∀nm p,n≤ m→ m≤ p→ n≤ p 4 3.192
∀n,0≤ n 3 0.007
∀nm,n≤ m→ Sn≤ Sm 3 0.2
∀nm,Sn≤ m→ n≤ m 3 0.108
∀nm,Sn≤ Sm→ n≤ m 4 0.384
∀nm,n < Sm→ n≤ m 4 0.395
∀nm,n≤ m→ n < Sm 3 0.12
∀nm,n < m→ Sn < Sm 3 0.147
∀nm,Sn < Sm→ n < m 4 0.418
∀n,0 < Sn 3 0.008
∀nm p,n < m→ m < p→ n < p 4 2.688
∀nm p,n < m→ m≤ p→ n < p 4 2.688
∀nm p,n≤ m→ m < p→ n < p 4 2.688
∀nm,n≤ m→ n < m∨n = m 5 4.132
∀n,n = n+0 4 2.133
∀nm,S (n+m) = n+Sm 4 2.212
∀l : listA, l = l ++ nil 4 2.542
∀l mn : listA,(l ++ m) ++ n = l ++ m ++ n 4 3.391
∀l l′ : listA, length(l ++ l′) = length l + length l′ 4 3.422

Table 1: Performance of automated induction tactic

the recursive function circ (for circular) is produced by transforming a partial proof term when a
repeating goal is detected.

Figure 3 Proof term of ∀ l1 l2 : list A, samelength l1 l2→ length l1 = length l2
Inductive samelength : (list A)->(list A)->Prop :=
| sl0 : sl (nil:list A) (nil:list A)
| sl1 : forall (a b:A) (l1 l2:list A), sl l1 l2 ->

sl (a::l1) (b::l2).

fix circ (l1 l2 : list A) (H : sl l1 l2) {struct H} :
length l1 = length l2 :=
match H in (sl l l0) return (length l = length l0) with
| sl0 => refl_equal (length nil)
| sl1 _ _ l3 l4 H0 =>

let H1 := circ l3 l4 H0 in
trans_eq (f_equal (fun f : nat -> nat => f (length l3))

(refl_equal S)) (f_equal S H1)
end

6 Conclusion and Further Work

We have presented a methodology for realizing descente infinie proofs in Coq, and an implementation
of this methodology in the form of an automated induction tactic. The tactic is capable of solving
simple goals that would otherwise not be solvable by any of the existing automated tactic. In the
current implementation, our use of generalization and rewriting techniques is rather rudimentary. In
future work, we plan to explore the use of rippling [7] to guide rewriting, and lemma discovery
methods [10].
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Figure 4 Proof term of ∀l l′ : listA, length(l ++ l′) = length l + length l′

fix circ (l l’ : list A) {struct l} :
length (l ++ l’) = length l + length l’ :=
match
l as l0 return (length (l0 ++ l’) = length l0 + length l’)

with
| nil => refl_equal (length nil + length l’)
| _ :: l0 =>

let H := circ l0 l’ in
(fun H0 : length (l0 ++ l’) = length l0 + length l’ =>
trans_eq
(f_equal (fun f : nat -> nat => f (length (l0 ++ l’)))

(refl_equal S)) (f_equal S H0)) H
end
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